82 resultados para Genome Rearrangements
em National Center for Biotechnology Information - NCBI
Resumo:
Somatic mutation accumulation has been implicated as a major cause of cancer and aging. By using a transgenic mouse model with a chromosomally integrated lacZ reporter gene, mutational spectra were characterized at young and old age in two organs greatly differing in proliferative activity, i.e., the heart and small intestine. At young age the spectra were nearly identical, mainly consisting of G·C to A·T transitions and 1-bp deletions. At old age, however, distinct patterns of mutations had developed. In small intestine, only point mutations were found to accumulate, including G·C to T·A, G·C to C·G, and A·T to C·G transversions and G·C to A·T transitions. In contrast, in heart about half of the accumulated mutations appeared to be large genome rearrangements, involving up to 34 centimorgans of chromosomal DNA. Virtually all other mutations accumulating in the heart appeared to be G·C to A·T transitions at CpG sites. These results suggest that distinct mechanisms lead to organ-specific genome deterioration and dysfunction at old age.
Resumo:
The parasitic bacterium Mycoplasma genitalium has a small, reduced genome with close to a basic set of genes. As a first step toward determining the families of protein domains that form the products of these genes, we have used the multiple sequence programs psi-blast and geanfammer to match the sequences of the 467 gene products of M. genitalium to the sequences of the domains that form proteins of known structure [Protein Data Bank (PDB) sequences]. PDB sequences (274) match all of 106 M. genitalium sequences and some parts of another 85; thus, 41% of its total sequences are matched in all or part. The evolutionary relationships of the PDB domains that match M. genitalium are described in the structural classification of proteins (SCOP) database. Using this information, we show that the domains in the matched M. genitalium sequences come from 114 superfamilies and that 58% of them have arisen by gene duplication. This level of duplication is more than twice that found by using pairwise sequence comparisons. The PDB domain matches also describe the domain structure of the matched sequences: just over a quarter contain one domain and the rest have combinations of two or more domains.
Resumo:
After ionising radiation double-strand breaks (dsb) are lethal if not repaired or misrepaired. Cell killing is greatly enhanced by hyperthermia and it is questioned here whether heat not only affects dsb repair capacity but also fidelity in a chromosomal context. dsb repair experiments were designed so as to mainly score non-homologous end joining, while homologous recombination was largely precluded. Human male G0 fibroblasts were either preheated (45°C, 20 min) or not before X-irradiation. dsb induction and repair were measured by conventional gel electrophoresis and an assay combining restriction digestion using a rare cutting enzyme (NotI) and Southern hybridisation, which detects large chromosomal rearrangements (>100 kb). dsb induction rate in an X-chromosomal NotI fragment was 4.8 × 10–3 dsb/Gy/Mb. Similar values were found for the genome overall and also when cells were preheated. After 50 Gy, fibroblasts were competent to largely restore the original restriction fragment size. Five per cent of dsb remained non-rejoined and 14% were misrejoined. Correct restitution of restriction fragments occurred preferably during the first hour but continued at a slow rate for 12–16 h. In addition, dsb appeared to misrejoin throughout the entire repair period. After hyperthermia the fractions of non-rejoined and misrejoined dsb were similarly increased to 13 and 51%, respectively. It is suggested that heat increases the probability of dsb being incorrectly rejoined but it is not likely to interfere with one dsb repair pathway in particular.
Resumo:
Integration of viral DNA into the host nuclear genome, although not unusual in bacterial and animal systems, has surprisingly not been reported for plants. We have discovered geminvirus-related DNA (GRD) sequences, in the form of distinct sets of multiple direct repeats comprising three related repeat classes, situated in a unique locus in the Nicotiana tabacum (tobacco) nuclear genome. The organization of these sequences is similar or identical in eight different tobacco cultivars we have examined. DNA sequence analysis reveals that each repeat has sequences most resembling those of the New World geminiviral DNA replication origin plus the adjacent AL1 gene, encoding the viral replication protein. We believe these GRD sequences originated quite recently in Nicotiana evolution through integration of geminiviral DNA by some combination of the processes of illegitimate recombination, amplification, deletions, and rearrangements. These events must have occurred in plant tissue that was subsequently able to contribute to meristematic tissue yielding gametes. GRD may have been retained in tobacco by selection or by random fixation in a small evolving population. Although we cannot detect transcription of these sequences, this does not exclude the possibility that they may originally have been expressed.
Resumo:
Molecular methods are used widely to measure genetic diversity within populations and determine relationships among species. However, it is difficult to observe genomic evolution in action because these dynamics are too slow in most organisms. To overcome this limitation, we sampled genomes from populations of Escherichia coli evolving in the laboratory for 10,000 generations. We analyzed the genomes for restriction fragment length polymorphisms (RFLP) using seven insertion sequences (IS) as probes; most polymorphisms detected by this approach reflect rearrangements (including transpositions) rather than point mutations. The evolving genomes became increasingly different from their ancestor over time. Moreover, tremendous diversity accumulated within each population, such that almost every individual had a different genetic fingerprint after 10,000 generations. As has been often suggested, but not previously shown by experiment, the rates of phenotypic and genomic change were discordant, both across replicate populations and over time within a population. Certain pivotal mutations were shared by all descendants in a population, and these are candidates for beneficial mutations, which are rare and difficult to find. More generally, these data show that the genome is highly dynamic even over a time scale that is, from an evolutionary perspective, very brief.
Resumo:
Whole-genome duplication approximately 108 years ago was proposed as an explanation for the many duplicated chromosomal regions in Saccharomyces cerevisiae. Here we have used computer simulations and analytic methods to estimate some parameters describing the evolution of the yeast genome after this duplication event. Computer simulation of a model in which 8% of the original genes were retained in duplicate after genome duplication, and 70–100 reciprocal translocations occurred between chromosomes, produced arrangements of duplicated chromosomal regions very similar to the map of real duplications in yeast. An analytical method produced an independent estimate of 84 map disruptions. These results imply that many smaller duplicated chromosomal regions exist in the yeast genome in addition to the 55 originally reported. We also examined the possibility of determining the original order of chromosomal blocks in the ancestral unduplicated genome, but this cannot be done without information from one or more additional species. If the genome sequence of one other species (such as Kluyveromyces lactis) were known it should be possible to identify 150–200 paired regions covering the whole yeast genome and to reconstruct approximately two-thirds of the original order of blocks of genes in yeast. Rates of interchromosome translocation in yeast and mammals appear similar despite their very different rates of homologous recombination per kilobase.
Resumo:
Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35–280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.
Resumo:
We performed a comprehensive analysis of T cell receptor (TCR) γ rearrangements in T cell precursors of the mouse adult thymus. Using a sensitive quantitative PCR method, we show that TCRγ rearrangements are present in CD44+CD25+ Pro-T thymocytes much earlier than expected. TCRγ rearrangements increase significantly from the Pro-T to the CD44−CD25+ Pre-T cell transition, and follow different patterns depending on each Vγ gene segment, suggesting that ordered waves of TCRγ rearrangement exist in the adult mouse thymus as has been described in the fetal mouse thymus. Recombinations of TCRγ genes occur concurrently with TCRδ and D-Jβ rearrangements, but before Vβ gene assembly. Productive TCRγ rearrangements do not increase significantly before the Pre-T cell stage and are depleted in CD4+CD8+ double-positive cells from normal mice. In contrast, double-positive thymocytes from TCRδ−/− mice display random proportions of TCRγ rearranged alleles, supporting a role for functional TCRγ/δ rearrangements in the γδ divergence process.
Resumo:
The recent ability to sequence whole genomes allows ready access to all genetic material. The approaches outlined here allow automated analysis of sequence for the synthesis of optimal primers in an automated multiplex oligonucleotide synthesizer (AMOS). The efficiency is such that all ORFs for an organism can be amplified by PCR. The resulting amplicons can be used directly in the construction of DNA arrays or can be cloned for a large variety of functional analyses. These tools allow a replacement of single-gene analysis with a highly efficient whole-genome analysis.
Resumo:
This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.
Resumo:
KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes–i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily.
Resumo:
The partially overlapping ORF P and ORF O are located within the domains of the herpes simplex virus 1 genome transcribed during latency. Earlier studies have shown that ORF P is repressed by infected cell protein 4 (ICP4), the major viral regulatory protein, binding to its cognate site at the transcription initiation site of ORF P. The ORF P protein binds to p32, a component of the ASF/SF2 alternate splicing factors; in cells infected with a recombinant virus in which ORF P was derepressed there was a significant decrease in the expression of products of key regulatory genes containing introns. We report that (i) the expression of ORF O is repressed during productive infection by the same mechanism as that determining the expression of ORF P; (ii) in cells infected at the nonpermissive temperature for ICP4, ORF O protein is made in significantly lower amounts than the ORF P protein; (iii) the results of insertion of a sequence encoding 20 amino acids between the putative initiator methionine codons of ORF O and ORF P suggest that ORF O initiates at the methionine codon of ORF P and that the synthesis of ORF O results from frameshift or editing of its RNA; and (iv) glutathione S-transferase–ORF O fusion protein bound specifically ICP4 and precluded its binding to its cognate site on DNA in vitro. These and earlier results indicate that ORF P and ORF O together have the capacity to reduce the synthesis or block the expression of regulatory proteins essential for viral replication in productive infection.
Resumo:
Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.
Resumo:
A crucial step in exploiting the information inherent in genome sequences is to assign to each protein sequence its three-dimensional fold and biological function. Here we describe fold assignment for the proteins encoded by the small genome of Mycoplasma genitalium. The assignment was carried out by our computer server (http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html), which assigns folds to amino acid sequences by comparing sequence-derived predictions with known structures. Of the total of 468 protein ORFs, 103 (22%) can be assigned a known protein fold with high confidence, as cross-validated with tests on known structures. Of these sequences, 75 (16%) show enough sequence similarity to proteins of known structure that they can also be detected by traditional sequence–sequence comparison methods. That is, the difference of 28 sequences (6%) are assignable by the sequence–structure method of the server but not by current sequence–sequence methods. Of the remaining 78% of sequences in the genome, 18% belong to membrane proteins and the remaining 60% cannot be assigned either because these sequences correspond to no presently known fold or because of insensitivity of the method. At the current rate of determination of new folds by x-ray and NMR methods, extrapolation suggests that folds will be assigned to most soluble proteins in the next decade.
Resumo:
ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene.