5 resultados para Genetic generalized epilepsy
em National Center for Biotechnology Information - NCBI
Resumo:
Generalized epilepsy with febrile seizures plus (GEFS+), a clinical subset of febrile seizures (FS), is characterized by frequent episodes beyond 6 years of age (FS+) and various types of subsequent epilepsy. Mutations in β1 and αI-subunit genes of voltage-gated Na+ channels have been associated with GEFS+1 and 2, respectively. Here, we report a mutation resulting in an amino acid exchange (R187W) in the gene encoding the α-subunit of neuronal voltage-gated Na+ channel type II (Nav1.2) in a patient with FS associated with afebrile seizures. The mutation R187W occurring on Arg187, a highly conserved residue among voltage-gated Na+ channels, was not found in 224 alleles of unaffected individuals. Whole-cell patch clamp recordings on human embryonic kidney (HEK) cells expressing a rat wild-type (rNav1.2) and the corresponding mutant channels showed that the mutant channel inactivated more slowly than wild-type whereas the Na+ channel conductance was not affected. Prolonged residence in the open state of the R187W mutant channel may augment Na+ influx and thereby underlie the neuronal hyperexcitability that induces seizure activity. Even though a small pedigree could not show clear cosegregation with the disease phenotype, these findings strongly suggest the involvement of Nav1.2 in a human disease and propose the R187W mutation as the genetic defect responsible for febrile seizures associated with afebrile seizures.
Resumo:
Dosage compensation in mammals occurs by X inactivation, a silencing mechanism regulated in cis by the X inactivation center (Xic). In response to developmental cues, the Xic orchestrates events of X inactivation, including chromosome counting and choice, initiation, spread, and establishment of silencing. It remains unclear what elements make up the Xic. We previously showed that the Xic is contained within a 450-kb sequence that includes Xist, an RNA-encoding gene required for X inactivation. To characterize the Xic further, we performed deletional analysis across the 450-kb region by yeast-artificial-chromosome fragmentation and phage P1 cloning. We tested Xic deletions for cis inactivation potential by using a transgene (Tg)-based approach and found that an 80-kb subregion also enacted somatic X inactivation on autosomes. Xist RNA coated the autosome but skipped the Xic Tg, raising the possibility that X chromosome domains escape inactivation by excluding Xist RNA binding. The autosomes became late-replicating and hypoacetylated on histone H4. A deletion of the Xist 5′ sequence resulted in the loss of somatic X inactivation without abolishing Xist expression in undifferentiated cells. Thus, Xist expression in undifferentiated cells can be separated genetically from somatic silencing. Analysis of multiple Xic constructs and insertion sites indicated that long-range Xic effects can be generalized to different autosomes, thereby supporting the feasibility of a Tg-based approach for studying X inactivation.
Resumo:
γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, is synthesized by two glutamate decarboxylase isoforms, GAD65 and GAD67. The separate role of the two isoforms is unknown, but differences in saturation with cofactor and subcellular localization suggest that GAD65 may provide reserve pools of GABA for regulation of inhibitory neurotransmission. We have disrupted the gene encoding GAD65 and backcrossed the mutation into the C57BL/6 strain of mice. In contrast to GAD67−/− animals, which are born with developmental abnormalities and die shortly after birth, GAD65−/− mice appear normal at birth. Basal GABA levels and holo-GAD activity are normal, but the pyridoxal 5′ phosphate-inducible apo-enzyme reservoir is significantly decreased. GAD65−/− mice develop spontaneous seizures that result in increased mortality. Seizures can be precipitated by fear or mild stress. Seizure susceptibility is dramatically increased in GAD65−/− mice backcrossed into a second genetic background, the nonobese diabetic (NOD/LtJ) strain of mice enabling electroencephalogram analysis of the seizures. The generally higher basal brain GABA levels in this backcross are significantly decreased by the GAD65−/− mutation, suggesting that the relative contribution of GABA synthesized by GAD65 to total brain GABA levels is genetically determined. Seizure-associated c-fos-like immunoreactivity reveals the involvement of limbic regions of the brain. These data suggest that GABA synthesized by GAD65 is important in the dynamic regulation of neural network excitability, implicate at least one modifier locus in the NOD/LtJ strain, and present GAD65−/− animals as a model of epilepsy involving GABA-ergic pathways.
Resumo:
We report the isolation of generalized transducing phages for Streptomyces species able to transduce chromosomal markers or plasmids between derivatives of Streptomyces coelicolor, the principal genetic model system for this important bacterial genus. We describe four apparently distinct phages (DAH2, DAH4, DAH5, and DAH6) that are capable of transducing multiple chromosomal markers at frequencies ranging from 10−5 to 10−9 per plaque-forming unit. The phages contain DNA ranging in size from 93 to 121 kb and mediate linked transfer of genetic loci at neighboring chromosomal sites sufficiently close to be packaged within the same phage particle. The key to our ability to demonstrate transduction by these phages was the establishment of conditions expected to severely reduce superinfection killing during the selection of transductants. The host range of these phages, as measured by the ability to form plaques, extends to species as distantly related as Streptomyces avermitilis and Streptomyces verticillus, which are among the most commercially important species of this genus. Transduction of plasmid DNA between S. coelicolor and S. verticillus was observed at frequencies of ≈10−4 transductants per colony-forming unit.
Resumo:
Further comparison of mitochondrial control-region DNA base sequences of 16 avian species belonging to the subfamily Phasianinae revealed the following: (i) Generalized perdicine birds (quails and partridges) are of ancient lineages. Even the closest pair, the common quail (Coturnix coturnix japonica) and the Chinese bamboo partridge (Bambusicola thoracica), maintained only 85.71% identity. (ii) The 12 species of phasianine birds previously and presently studied belonged to three distinct branches. The first branch was made exclusively of members of the genus Gallus, while the second branch was made of pheasants of the genera Phasianus, Chrysolophus, and Syrmaticus. Gallopheasants of the genus Lophura were distant cousins to these pheasants. The great argus (Argusianus argus) and peafowls of the genus Pavo constituted the third branch. The position of peacock-pheasants of the genus Polyplectron in the third branch was similar to that of the genus Lophura in the second branch. Members of the fourth phasianine branch, such as tragopans and monals, were not included in the present study. (iii) The one perdicine species, Bambusicola thoracica, was more closely related to phasianine genera Gallus and Pavo than to members of other perdicine genera. The above might indicate that Bambusicola belong to one-stem perdicine lineage that later splits into two sublineages that yielded phasianine birds, one evolving to Gallus, and the other differentiating toward Pavo and its allies.