4 resultados para Generation expansion planning
em National Center for Biotechnology Information - NCBI
Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: Founder effect and premutations
Resumo:
Friedreich’s ataxia, the most frequent inherited ataxia, is caused, in the vast majority of cases, by large GAA repeat expansions in the first intron of the frataxin gene. The normal sequence corresponds to a moderately polymorphic trinucleotide repeat with bimodal size distribution. Small normal alleles have approximately eight to nine repeats whereas a more heterogeneous mode of large normal alleles ranges from 16 to 34 GAA. The latter class accounts for ≈17% of normal alleles. To identify the origin of the expansion mutation, we analyzed linkage disequilibrium between expansion mutations or normal alleles and a haplotype of five polymorphic markers within or close to the frataxin gene; 51% of the expansions were associated with a single haplotype, and the other expansions were associated with haplotypes that could be related to the major one by mutation at a polymorphic marker or by ancient recombination. Of interest, the major haplotype associated with expansion is also the major haplotype associated with the larger alleles in the normal size range and was almost never found associated with the smaller normal alleles. The results indicate that most if not all large normal alleles derive from a single founder chromosome and that they represent a reservoir for larger expansion events, possibly through “premutation” intermediates. Indeed, we found two such alleles (42 and 60 GAA) that underwent cataclysmic expansion to pathological range in a single generation. This stepwise evolution to large trinucleotide expansions already was suggested for myotonic dystrophy and fragile X syndrome and may relate to a common mutational mechanism, despite sequence motif differences.
Resumo:
Hybrid polar compounds, of which hexamethylenebisacetamide (HMBA) is the prototype, are potent inducers of differentiation of murine erythroleukemia (MEL) cells and a wide variety of other transformed cells. HMBA has been shown to induce differentiation of neoplastic cells in patients, but is not an adequate therapeutic agent because of dose-limiting toxicity. We report on a group of three potent second generation hybrid polar compounds, diethyl bis-(pentamethylene-N,N-dimethylcarboxamide) malonate (EMBA), suberoylanilide hydroxamic acid (SAHA), and m-carboxycinnamic acid bis-hydroxamide (CBHA) with optimal concentrations for inducing MEL cells of 0.4 mM, 2 microM, and 4 microM, respectively, compared to 5 mM for HMBA. All three agents induce accumulation of underphosphorylated pRB; increased levels of p2l protein, a prolongation of the initial G1 phase of the cell cycle; and accumulation of hemoglobin. However, based upon their effective concentrations, the cross-resistance or sensitivity of an HMBA-resistant MEL cell variant, and differences in c-myb expression during induction, these differentiation-inducing hybrid polar compounds can be grouped into two subsets, HMBA/EMBA and SAHA/CBHA. This classification may prove of value in selecting and planning prospective preclinical and clinical studies toward the treatment of cancer by differentiation therapy.
Resumo:
Major histocompatibility complex (MHC) class I and II molecules are loaded with peptides in distinct subcellular compartments. The transporter associated with antigen processing (TAP) is responsible for delivering peptides derived from cytosolic proteins to the endoplasmic reticulum, where they bind to class I molecules, while the invariant chain (Ii) directs class II molecules to endosomal compartments, where they bind peptides originating mostly from exogenous sources. Mice carrying null mutations of the TAP1 or Ii genes (TAP10) or Ii0, respectively) have been useful tools for elucidating the two MHC/peptide loading pathways. To evaluate to what extent these pathways functionally intersect, we have studied the biosynthesis of MHC molecules and the generation of T cells in Ii0TAP10 double-mutant mice. We find that the assembly and expression of class II molecules in Ii0 and Ii0TAP10 animals are indistinguishable and that formation and display of class I molecules is the same in TAP10 and Ii0TAP10 animals. Thymic selection in the double mutants is as expected, with reduced numbers of both CD4+ CD8- and CD4- CD8+ thymocyte compartments. Surprisingly, lymph node T-cell populations look almost normal; we propose that population expansion of peripheral T cells normalizes the numbers of CD4+ and CD8+ cells in Ii0TAP10 mice.
Resumo:
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.