2 resultados para Generalized inverse Gaussian distribution
em National Center for Biotechnology Information - NCBI
Resumo:
The study of passive scalar transport in a turbulent velocity field leads naturally to the notion of generalized flows, which are families of probability distributions on the space of solutions to the associated ordinary differential equations which no longer satisfy the uniqueness theorem for ordinary differential equations. Two most natural regularizations of this problem, namely the regularization via adding small molecular diffusion and the regularization via smoothing out the velocity field, are considered. White-in-time random velocity fields are used as an example to examine the variety of phenomena that take place when the velocity field is not spatially regular. Three different regimes, characterized by their degrees of compressibility, are isolated in the parameter space. In the regime of intermediate compressibility, the two different regularizations give rise to two different scaling behaviors for the structure functions of the passive scalar. Physically, this means that the scaling depends on Prandtl number. In the other two regimes, the two different regularizations give rise to the same generalized flows even though the sense of convergence can be very different. The “one force, one solution” principle is established for the scalar field in the weakly compressible regime, and for the difference of the scalar in the strongly compressible regime, which is the regime of inverse cascade. Existence and uniqueness of an invariant measure are also proved in these regimes when the transport equation is suitably forced. Finally incomplete self similarity in the sense of Barenblatt and Chorin is established.
Resumo:
The study of the large-sample distribution of the canonical correlations and variates in cointegrated models is extended from the first-order autoregression model to autoregression of any (finite) order. The cointegrated process considered here is nonstationary in some dimensions and stationary in some other directions, but the first difference (the “error-correction form”) is stationary. The asymptotic distribution of the canonical correlations between the first differences and the predictor variables as well as the corresponding canonical variables is obtained under the assumption that the process is Gaussian. The method of analysis is similar to that used for the first-order process.