4 resultados para Genealogy of discourse
em National Center for Biotechnology Information - NCBI
The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus
Resumo:
Molecular differentiation between races or closely related species is often incongruent with the reproductive divergence of the taxa of interest. Shared ancient polymorphism and/or introgression during secondary contact may be responsible for the incongruence. At loci contributing to speciation, these two complications should be minimized (1, 2); hence, their variation may more faithfully reflect the history of the species' reproductive differentiation. In this study, we analyzed DNA polymorphism at the Odysseus (OdsH) locus of hybrid sterility between Drosophila mauritiana and Drosophila simulans and were able to verify such a prediction. Interestingly, DNA variation only a short distance away (1.8 kb) appears not to be influenced by the forces that shape the recent evolution of the OdsH coding region. This locus thus may represent a test case of inferring phylogeny of very closely related species.
Resumo:
The generation time of HIV Type 1 (HIV-1) in vivo has previously been estimated using a mathematical model of viral dynamics and was found to be on the order of one to two days per generation. Here, we describe a new method based on coalescence theory that allows the estimate of generation times to be derived by using nucleotide sequence data and a reconstructed genealogy of sequences obtained over time. The method is applied to sequences obtained from a long-term nonprogressing individual at five sampling occasions. The estimate of viral generation time using the coalescent method is 1.2 days per generation and is close to that obtained by mathematical modeling (1.8 days per generation), thus strengthening confidence in estimates of a short viral generation time. Apart from the estimation of relevant parameters relating to viral dynamics, coalescent modeling also allows us to simulate the evolutionary behavior of samples of sequences obtained over time.
Resumo:
Macromolecular transport systems in bacteria currently are classified by function and sequence comparisons into five basic types. In this classification system, type II and type IV secretion systems both possess members of a superfamily of genes for putative NTP hydrolase (NTPase) proteins that are strikingly similar in structure, function, and sequence. These include VirB11, TrbB, TraG, GspE, PilB, PilT, and ComG1. The predicted protein product of tadA, a recently discovered gene required for tenacious adherence of Actinobacillus actinomycetemcomitans, also has significant sequence similarity to members of this superfamily and to several unclassified and uncharacterized gene products of both Archaea and Bacteria. To understand the relationship of tadA and tadA-like genes to those encoding the putative NTPases of type II/IV secretion, we used a phylogenetic approach to obtain a genealogy of 148 NTPase genes and reconstruct a scenario of gene superfamily evolution. In this phylogeny, clear distinctions can be made between type II and type IV families and their constituent subfamilies. In addition, the subgroup containing tadA constitutes a novel and extremely widespread subfamily of the family encompassing all putative NTPases of type IV secretion systems. We report diagnostic amino acid residue positions for each major monophyletic family and subfamily in the phylogenetic tree, and we propose an easy method for precisely classifying and naming putative NTPase genes based on phylogeny. This molecular key-based method can be applied to other gene superfamilies and represents a valuable tool for genome analysis.
Resumo:
This paper provides an overview of the colloquium's discussion session on natural language understanding, which followed presentations by M. Bates [Bates, M. (1995) Proc. Natl. Acad. Sci. USA 92, 9977-9982] and R. C. Moore [Moore, R. C. (1995) Proc. Natl. Acad. Sci. USA 92, 9983-9988]. The paper reviews the dual role of language processing in providing understanding of the spoken input and an additional source of constraint in the recognition process. To date, language processing has successfully provided understanding but has provided only limited (and computationally expensive) constraint. As a result, most current systems use a loosely coupled, unidirectional interface, such as N-best or a word network, with natural language constraints as a postprocess, to filter or resort the recognizer output. However, the level of discourse context provides significant constraint on what people can talk about and how things can be referred to; when the system becomes an active participant, it can influence this order. But sources of discourse constraint have not been extensively explored, in part because these effects can only be seen by studying systems in the context of their use in interactive problem solving. This paper argues that we need to study interactive systems to understand what kinds of applications are appropriate for the current state of technology and how the technology can move from the laboratory toward real applications.