19 resultados para Gamma Function

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated hippocampal inhibitory function and the level of expression of gamma-aminobutyric acid type A (GABAA) receptor mRNA in an in vivo model of epilepsy. Chronic recurrent limbic seizures were induced in rats using injections of pilocarpine. Electrophysiological studies performed on hippocampal slices prepared from control and epileptic animals 1 to 2 months after pilocarpine injections demonstrated a significant hyperexcitability in the epileptic animals. Reduced levels of mRNA expression for the alpha 2 and alpha 5 subunits of the GABAA receptors were evident in the CA1, CA2, and CA3 regions of the hippocampus of epileptic animals. No decrease in mRNA encoding alpha 1, beta 2, or gamma 2 GABAA receptor subunits was observed. In addition, no change in the mRNA levels of alpha CaM kinase II was seen. Selective decreases in mRNA expression did not correlate with neuronal cell loss. The results indicate that selective, long-lasting reduction of GABAA subunit mRNA expression and increased excitability, possibly reflecting loss of GABAergic inhibition, occur in an in vivo model of partial complex epilepsy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Guanine nucleotide-binding proteins (G proteins) activate K+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits G beta 1 and G gamma 2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by G beta gamma subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K+ channels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium/phospholipid-dependent protein kinase (protein kinase C, PKC) has been suggested to play a role in the sensitivity of gamma-aminobutyrate type A (GABAA) receptors to ethanol. We tested a line of null mutant mice that lacks the gamma isoform of PKC (PKC gamma) to determine the role of this brain-specific isoenzyme in ethanol sensitivity. We found that the mutation reduced the amount of PKC gamma immunoreactivity in cerebellum to undetectable levels without altering the levels of the alpha, beta I, or beta II isoforms of PKC. The mutant mice display reduced sensitivity to the effects of ethanol on loss of righting reflex and hypothermia but show normal responses to flunitrazepam or pentobarbital. Likewise, GABAA receptor function of isolated brain membranes showed that the mutation abolished the action of ethanol but did not alter actions of flunitrazepam or pentobarbital. These studies show the unique interactions of ethanol with GABAA receptors and suggest protein kinase isoenzymes as possible determinants of genetic differences in response to ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The γ subunit of the Na,K-ATPase is a hydrophobic protein of approximately 10 kDa. The γ subunit was expressed in Sf-9 insect cells and Xenopus oocytes to ascertain its role in Na,K-ATPase function. Immunoblotting has shown that the γ subunit is expressed in Sf-9 cells infected with recombinant baculovirus containing the cDNA for the human γ subunit. Confocal microscopy demonstrates that the γ subunit can be delivered to the plasma membrane of Sf-9 cells independently of the other Na,K-ATPase subunits and that γ colocalizes with α1 when these proteins are coexpressed. When Sf-9 cells were coinfected with α1 and γ, antibodies to the γ subunit were able to coimmunoprecipitate the α1 subunit, suggesting that γ is able to associate with α1. The γ subunit is a member of a family of single-pass transmembrane proteins that induces ion fluxes in Xenopus oocytes. Evidence that the γ subunit is a functional component was supported by experiments showing γ-induced cation channel activity when expressed in oocytes and increases in Na+ and K+ uptake when expressed in Sf-9 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

gamma-aminobutyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. They are constructed from four subunit classes with multiple members: alpha (1-6), beta (1-4), gamma (1-4), and delta (1). The contribution of subunit diversity in determining receptor subcellular targeting was examined in polarized Madin-Darby canine kidney (MDCK) cells. Significant detection of cell surface homomeric receptor expression by a combination of both immunological and electrophysiological methodologies was only found for the beta 3 subunit. Expression of alpha/beta binary combinations resulted in a nonpolarized distribution for alpha 1 beta 1 complexes, but specific basolateral targeting of both alpha 1 beta 2 and alpha 1 beta 3 complexes. The polarized distribution of these alpha/beta complexes was unaffected by the presence of the gamma 2S subunit. Interestingly, delivery of receptors containing the beta 3 subunit to the basolateral domain occurs via the apical surface. These results show that beta subunits can selectively target GABAA receptors to distinct cellular locations. Changes in the spatial and temporal expression of beta-subunit isoforms may therefore provide a mechanism for relocating GABAA receptor function between distinct neuronal domains. Given the critical role of these receptors in mediating synaptic inhibition, the contribution of different beta subunits in GABAA receptor function, may have implications in neuronal development and for receptor localization/clustering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RXR gamma (RXR, retinoid X receptor) gene was disrupted in the mouse. Homozygous mutant mice developed normally and were indistinguishable from their RXR gamma +/- or wild-type littermates with respect to growth, fertility, viability, and apparent behavior in the animal facility. Moreover, RXR alpha -/-/RXR gamma -/- and RXR beta -/-/RXR gamma -/- mutant phenotypes were indistinguishable from those of RXR alpha -/- and RXR beta -/- mutants, respectively. Strikingly, RXR alpha +/-/RXR beta -/-/RXR gamma -/- triple mutants were viable. Thus, it appears that RXR gamma does not exert any essential function that cannot be performed by RXR alpha or RXR beta, and one copy of RXR alpha is sufficient to perform most of the functions of the RXRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type I (alpha, beta) and type II (gamma) interferons (IFNs) can restrict the growth of many cell types. INF-stimulated gene transcription, a key early event in IFN response, acts through the Janus kinase-signal transducers and activators of transcription pathway, in which both IFN-alpha and IFN-gamma activate the transcription factor Stat1. A cell line lacking Stat1 (U3A) was not growth-arrested by IFN-alpha or IFN-gamma, and experiments were carried out with U3A cells permanently expressing normal or various mutant forms of Stat1 protein. Only cells in which complete Stat1 activity was available (Stat1alpha) were growth-inhibited by IFN-gamma. A mutant that supports 20-30% normal transcription did not cause growth restraint. In contrast, IFN-alpha growth restraint was imposed by cells producing Stat1beta, which lacks transcriptional activation potential. This parallels earlier results showing the truncated Stat1 can function in IFN-alpha gene activation. In addition to experiments on long-term cultured cells, we also found that wild-type primary mouse embryonic fibroblasts were inhibited by IFNs, but fibroblasts from Stat1-deficient mouse embryos were not inhibited by IFNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific signal transduction function of the gamma c subunit in the interleukin (IL) 2, IL-4, IL-7, IL-9, and IL-15 receptor complexes remains undefined. The present structure-function analyses demonstrated that the entire cytoplasmic tail of gamma c could be functionally replaced in the IL-2 receptor (IL-2R) signaling complex by a severely truncated erythropoietin receptor cytoplasmic domain lacking tyrosine residues. Heterodimerization of IL-2R beta with either gamma c or the truncated erythropoietin receptor chain led to an array of specific signals normally derived from the native IL-2R despite the substitution of Janus kinase JAK2 for JAK3 in the receptor complex. These findings thus suggest a model in which the gamma c subunit serves as a common and generic "trigger" chain by providing a nonspecific Janus kinase for signaling program initiation, while signal specificity is determined by the unique "driver" subunit in each of the gamma c- containing receptor complexes. Furthermore, these results may have important functional implications for the asymmetric design of many cytokine receptor complexes and the evolutionary design of receptor subfamilies that share common trigger or driver subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein encoded by the gamma 134.5 gene of herpes simplex virus precludes premature shutoff of protein synthesis in human cells triggered by stress associated with onset of viral DNA synthesis. The carboxyl terminus of the protein is essential for this function. This report indicates that the shutoff of protein synthesis is not due to mRNA degration because mRNA from wild-type or gamma 134.5- virus-infected cells directs protein synthesis. Analyses of the posttranslational modifications of translation initiation factor eIF-2 showed the following: (i) eIF-2 alpha was selectively phosphorylated by a kinase present in ribosome-enriched fraction of cells infected with gamma 134.5- virus. (ii) Endogenous eIF-2 alpha was totally phosphorylated in cells infected with gamma 134.5- virus or a virus lacking the 3' coding domain of the gamma 134.5 gene but was not phosphorylated in mock-infected or wild-type virus-infected cells. (iii) Immune precipitates of the PKR kinase that is responsible for regulation of protein synthesis of some cells by phosphorylation of eIF-2 alpha yielded several phosphorylated polypeptides. Of particular significance were two observations. First, phosphorylation of PKR kinase was elevated in all infected cells relative to the levels in mock-infected cells. Second, the precipitates from lysates of cells infected with gamma 134.5- virus or a virus lacking the 3' coding domain of the gamma 134.5 gene contained an additional labeled phosphoprotein of M(r) 90,000 (p90). This phosphoprotein was present in only trace amounts in the immunoprecipitate from cells infected with wild-type virus or mutants lacking a portion of the 5' domain of gamma 134.5. We conclude that in the absence of gamma 134.5 protein, PKR kinase complexes with the p90 phosphoprotein and shuts off protein synthesis by phosphorylation of the alpha subunit of translation initiation factor eIF-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a model of gamma-aminobutyric acid (GABA)ergic synaptic transmission mediated by GABAA and GABAB receptors, including cooperativity in the guanine nucleotide binding protein (G protein) cascade mediating the activation of K+ channels by GABAB receptors. If the binding of several G proteins is needed to activate the K+ channels, then only a prolonged activation of GABAB receptors evoked detectable currents. This could occur if strong stimuli evoked release in adjacent terminals and the spillover resulted in prolonged activation of the receptors, leading to inhibitory responses similar to those observed in hippocampal slices. The same model also reproduced thalamic GABAB responses to high-frequency bursts of stimuli. In this case, prolonged activation of the receptors was due to high-frequency release conditions. This model provides insights into the function of GABAB receptors in normal and epileptic discharges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Receptor-G protein interaction is characterized by cycles of association and dissociation. We present evidence which indicates that during receptor-G protein interaction, the C-terminal tail of the G protein gamma subunit, which is masked in the beta gamma complex, is exposed and establishes high-affinity contact with the receptor. This potential conformational switch provides a mechanism to regulate receptor-G protein coupling. This switch may also be significant for the role of the beta gamma complex in regulation of effector function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin (IL) 2 signaling requires the dimerization of the IL-2 receptor beta (IL-2R beta) and common gamma (gamma c) chains. The gamma is also a component of the receptors for IL-4, IL-7, and IL-9. To assess the extent and role of the receptor signal transducing system utilizing the gamma c chain on human intestinal epithelial cells, the expression of gamma c, IL-2R beta, and receptor chains specific for IL-4, IL-7, and IL-9 was assessed by reverse transcription-coupled PCR on human intestinal epithelial cell lines and on isolated primary human intestinal epithelial cells. Caco-2, HT-29, and T-84 cells were found to express transcripts for the gamma c and IL-4R chains constitutively. IL-2R beta chain expression was demonstrated in Caco-2 and HT-29 but not in T-84 cells. None of the cell lines expressed mRNA for the IL-2R alpha chain. After stimulation with epidermal growth factor for 24 h Caco-2, HT-29, and T-84 cells expressed transcripts for IL-7R. In addition, Caco-2 and HT-29 cells expressed mRNA for the IL-9R. Receptors for IL-2, IL-4, IL-7, and IL-9 on intestinal epithelial cells lines appeared to be functional; stimulation with these cytokines caused rapid tyrosine phosphorylation of proteins. The relevance of the observations in intestinal epithelial cell lines for intestinal epithelial function in vivo was supported by the demonstration of transcripts for gamma c, IL-2R beta, IL-4R, IL-7R, and IL-9R in primary human intestinal epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vigilance, anxiety, epileptic activity, and muscle tone can be modulated by drugs acting at the benzodiazepine (BZ) site of gamma-aminobutyric acid type A (GABAA) receptors. In vivo, BZ sites are potential targets for endogenous ligands regulating the corresponding central nervous system states. To assess the physiological relevance of BZ sites, mice were generated containing GABAA receptors devoid of BZ sites. Following targeted disruption of the gamma 2 subunit gene, 94% of the BZ sites were absent in brain of neonatal mice, while the number of GABA sites was only slightly reduced. Except for the gamma 2 subunit, the level of expression and the regional and cellular distribution of the major GABAA receptor subunits were unaltered. The single channel main conductance level and the Hill coefficient were reduced to values consistent with recombinant GABAA receptors composed of alpha and beta subunits. The GABA response was potentiated by pentobarbital but not by flunitrazepam. Diazepam was inactive behaviorally. Thus, the gamma 2 subunit is dispensable for the assembly of functional GABAA receptors but is required for normal channel conductance and the formation of BZ sites in vivo. BZ sites are not essential for embryonic development, as suggested by the normal body weight and histology of newborn mice. Postnatally, however, the reduced GABAA receptor function is associated with retarded growth, sensorimotor dysfunction, and drastically reduced life-span. The lack of postnatal GABAA receptor regulation by endogenous ligands of BZ sites might contribute to this phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coexpression in Xenopus oocytes of the inwardly rectifying guanine nucleotide binding (G)-protein-gated K channel GIRK1 with a myristoylated modification of the (putative) cytosolic C-terminal tail [GIRK1 aa 183-501 fused in-frame to aa 1-15 of p60src and denoted src+ (183-501)] leads to a high degree of inhibition of the inward G-protein-gated K+ current. The nonmyristoylated segment, src- (183-501), is not active. Although some interference with assembly is not precluded, the evidence indicates that the main mechanism of inhibition is interference with functional activation of the channel by G proteins. In part, the tail functions as a blocking particle similar to a "Shaker ball"; it may also function by competing for the available supply of free G beta gamma liberated by hormone activation of a seven-helix receptor. The non-G-protein-gated weak inward rectifier ROMK1 is less effectively inhibited, and a Shaker K channel was not inhibited. Immunological assays show the presence of a high concentration of src+ (183-501) in the plasma membrane and the absence of any membrane forms for the nonmyristoylated segment.