10 resultados para Gallotti cage

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free GroEL binds denatured proteins very tightly: it retards the folding of barnase 400-fold and catalyzes unfolding fluctuations in native barnase and its folding intermediate. GroEL undergoes an allosteric transition from its tight-binding T-state to a weaker binding R-state on the cooperative binding of nucleotides (ATP/ADP) and GroES. The preformed GroEL.GroES.nucleotide complex retards the folding of barnase by only a factor of 4, and the folding rate is much higher than the ATPase activity that releases GroES from the complex. Binding of GroES and nucleotides to a preformed GroEL.denatured-barnase complex forms an intermediately fast-folding complex. We propose the following mechanism for the molecular chaperone. Denatured proteins bind to the resting GroEL.GroES.nucleotide complex. Fast-folding proteins are ejected as native structures before ATP hydrolysis. Slow-folding proteins enter chaperoning cycles of annealing and folding after the initial ATP hydrolysis. This step causes transient release of GroES and formation of the GroEL.denatured-protein complexes with higher annealing potential. The intermediately fast-folding complex is formed on subsequent rebinding of GroES. The ATPase activity of GroEL.GroES is thus the gatekeeper that selects for initial entry of slow-folding proteins to the chaperone action and then pumps successive transitions from the faster-folding R-states to the tighter-binding/stronger annealing T-states. The molecular chaperone acts as a combination of folding cage and an annealing machine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cagA, a gene that codes for an immunodominant antigen, is present only in Helicobacter pylori strains that are associated with severe forms of gastroduodenal disease (type I strains). We found that the genetic locus that contains cagA (cag) is part of a 40-kb DNA insertion that likely was acquired horizontally and integrated into the chromosomal glutamate racemase gene. This pathogenicity island is flanked by direct repeats of 31 bp. In some strains, cag is split into a right segment (cagI) and a left segment (cagII) by a novel insertion sequence (IS605). In a minority of H. pylori strains, cagI and cagII are separated by an intervening chromosomal sequence. Nucleotide sequencing of the 23,508 base pairs that form the cagI region and the extreme 3′ end of the cagII region reveals the presence of 19 ORFs that code for proteins predicted to be mostly membrane associated with one gene (cagE), which is similar to the toxin-secretion gene of Bordetella pertussis, ptlC, and the transport systems required for plasmid transfer, including the virB4 gene of Agrobacterium tumefaciens. Transposon inactivation of several of the cagI genes abolishes induction of IL-8 expression in gastric epithelial cell lines. Thus, we believe the cag region may encode a novel H. pylori secretion system for the export of virulence determinants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of nanoscale-sized supramolecular cage compounds with a polyhedral framework is prepared by self-assembly from tritopic building blocks and rectangular corner units via noncovalent coordination interactions. These highly symmetrical cage compounds are described as face-directed, self-assembled truncated tetrahedra with Td symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent article [Khan, A. U., Kovacic, D., Kolbanovsky, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], the authors claimed that ONOO−, after protonation to ONOOH, decomposes into 1HNO and 1O2 according to a spin-conserved unimolecular mechanism. This claim was based partially on their observation that nitrosylhemoglobin is formed via the reaction of peroxynitrite with methemoglobin at neutral pH. However, thermochemical considerations show that the yields of 1O2 and 1HNO are about 23 orders of magnitude lower than those of ⋅NO2 and ⋅OH, which are formed via the homolysis of ONOOH. We also show that methemoglobin does not form with peroxynitrite any spectrally detectable product, but with contaminations of nitrite and H2O2 present in the peroxynitrite sample. Thus, there is no need to modify the present view of the mechanism of ONOOH decomposition, according to which initial homolysis into a radical pair, [ONO⋅ ⋅OH]cage, is followed by the diffusion of about 30% of the radicals out of the cage, while the rest recombines to nitric acid in the solvent cage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormal dopaminergic transmission is implicated in schizophrenia, attention deficit hyperactivity disorder, and drug addiction. In an attempt to model aspects of these disorders, we have generated hyperdopaminergic mutant mice by reducing expression of the dopamine transporter (DAT) to 10% of wild-type levels (DAT knockdown). Fast-scan cyclic voltammetry and in vivo microdialysis revealed that released dopamine was cleared at a slow rate in knockdown mice, which resulted in a higher extracellular dopamine concentration. Unlike the DAT knockout mice, the DAT knockdown mice do not display a growth retardation phenotype. They have normal home cage activity but display hyperactivity and impaired response habituation in novel environments. In addition, we show that both the indirect dopamine receptor agonist amphetamine and the direct agonists apomorphine and quinpirole inhibit locomotor activity in the DAT knockdown mice, leading to the hypothesis that a shift in the balance between dopamine auto and heteroreceptor function may contribute to the therapeutic effect of psychostimulants in attention deficit hyperactivity disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general strategy is described for designing proteins that self assemble into large symmetrical nanomaterials, including molecular cages, filaments, layers, and porous materials. In this strategy, one molecule of protein A, which naturally forms a self-assembling oligomer, An, is fused rigidly to one molecule of protein B, which forms another self-assembling oligomer, Bm. The result is a fusion protein, A-B, which self assembles with other identical copies of itself into a designed nanohedral particle or material, (A-B)p. The strategy is demonstrated through the design, production, and characterization of two fusion proteins: a 49-kDa protein designed to assemble into a cage approximately 15 nm across, and a 44-kDa protein designed to assemble into long filaments approximately 4 nm wide. The strategy opens a way to create a wide variety of potentially useful protein-based materials, some of which share similar features with natural biological assemblies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of the catalytic power of enzymes is discussed, paying attention to evolutionary constraints. It is pointed out that enzyme catalysis reflects energy contributions that cannot be determined uniquely by current experimental approaches without augmenting the analysis by computer simulation studies. The use of energy considerations and computer simulations allows one to exclude many of the popular proposals for the way enzymes work. It appears that the standard approaches used by organic chemists to catalyze reactions in solutions are not used by enzymes. This point is illustrated by considering the desolvation hypothesis and showing that it cannot account for a large increase in kcat relative to the corresponding kcage for the reference reaction in a solvent cage. The problems associated with other frequently invoked mechanisms also are outlined. Furthermore, it is pointed out that mutation studies are inconsistent with ground state destabilization mechanisms. After considering factors that were not optimized by evolution, we review computer simulation studies that reproduced the overall catalytic effect of different enzymes. These studies pointed toward electrostatic effects as the most important catalytic contributions. The nature of this electrostatic stabilization mechanism is far from being obvious because the electrostatic interaction between the reacting system and the surrounding area is similar in enzymes and in solution. However, the difference is that enzymes have a preorganized dipolar environment that does not have to pay the reorganization energy for stabilizing the relevant transition states. Apparently, the catalytic power of enzymes is stored in their folding energy in the form of the preorganized polar environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of proton binding to the extracellular and the cytoplasmic surfaces of the purple membrane were measured by laser-induced proton pulses. Purple membranes, selectively labeled by fluorescein at Lys-129 of bacteriorhodopsin, were pulsed by protons released in the aqueous bulk from excited pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) and the reaction of protons with the indicators was measured. Kinetic analysis of the data imply that the two faces of the membrane differ in their buffer capacities and in their rates of interaction with bulk protons. The extracellular surface of the purple membrane contains one anionic proton binding site per protein molecule with pK = 5.1. This site is within a Coulomb cage radius (approximately 15 A) from Lys-129. The cytoplasmic surface of the purple membrane bears 4-5 protonable moieties (pK = 5.1) that, due to close proximity, function as a common proton binding site. The reaction of the proton with this cluster is at a very fast rate (3.10(10) M-1.s-1). The proximity between the elements is sufficiently high that even in 100 mM NaCl they still function as a cluster. Extraction of the chromophore retinal from the protein has a marked effect on the carboxylates of the cytoplasmic surface, and two to three of them assume positions that almost bar their reaction with bulk protons. The protonation dynamics determined at the surface of the purple membrane is of relevance both for the vectorial proton transport mechanism of bacteriorhodopsin and for energy coupling, not only in halobacteria, but also in complex chemiosmotic systems such as mitochondrial and thylakoid membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the first step of a research program aimed at developing a bispecific monoclonal antibody system for the delivery of boron-rich molecules to tumor cells for boron neutron capture therapy, monoclonal antibodies (mAbs) were produced against an anionic nido-carborane derivative, 4-[7,8-dicarbadodecahydroundecaborat(-1)-7-yl]butanoic acid. Two IgG subclass mAbs, designated HAW101 and HAW102, were identified that specifically bound the anionic nido-carborane hapten, as well as a variety of other anionic nido-carborane cage derivatives. By using surface plasmon resonance technology, the affinity constants of HAW101 and HAW102 were determined to be 1.9 x 10(9) and 6.8 x 10(8) M-1, respectively. A diverse array of 7-substituted and 7,8-disubstituted anionic nido-carborane derivatives reacted with the mAb HAW101 in competition ELISA, whereas anionic closo-polyhedral boranes showed negligible binding, suggesting a role for the open nido-carborane cage structure. These results suggest that mAbs such as HAW101, which bind anionic nido-carboranes, are useful in the development of bispecific mAbs for specific targeting and enhanced boron delivery to tumor sites.