10 resultados para GROWTH-KINETICS
em National Center for Biotechnology Information - NCBI
Resumo:
The drought of progress in clinical brain tumor therapy provides an impetus for developing new treatments as well as methods for testing therapeutics in animal models. The inability of traditional assays to simultaneously measure tumor size, location, growth kinetics, and cell kill achieved by a treatment complicates the interpretation of therapy experiments in animal models. To address these issues, tumor volume measurements obtained from serial magnetic resonance images were used to noninvasively estimate cell kill values in individual rats with intracerebral 9L tumors after treatment with 0.5, 1, or 2 × LD10 doses of 1,3-bis(2-chloroethyl)-1-nitrosourea. The calculated cell kill values were consistently lower than those reported using traditional assays. A dose-dependent increase in 9L tumor doubling time after treatment was observed that significantly contributed to the time required for surviving cells to repopulate the tumor mass. This study reveals that increases in animal survival are not exclusively attributable to the fraction of tumor cells killed but rather are a function of the cell kill and repopulation kinetics, both of which vary with treatment dose.
Resumo:
Molecular biomaterial engineering permits in vivo transplantation of cells and tissues, offering the promise of restoration of physiologic control rather than pharmacologic dosing with isolated compounds. We engrafted endothelial cells on Gelfoam biopolymeric matrices with retention of viability, normal growth kinetics, immunoreactivity, and biochemical activity. The production of heparan sulfate proteoglycan and inhibition of basic fibroblast growth factor binding and activity by engrafted cells were indistinguishable from endothelial cells grown in culture. Perivascular implantation of Gelfoam-endothelial cell scaffolds around balloon-denuded rat carotid arteries reduced intimal hyperplasia 88.1%, far better than the isolated administration of heparin, the most effective endothelial mimic compound. In concert with a reduction in intimal area, cell proliferation was reduced by > 90%. To our knowledge, there have been no previous reports of extravascular cell implants controlling vasculoproliferative disease. Tissue engineered cells offer the potential for potent methods of vascular growth regulation and insight into the complex autocrine-paracrine control mechanisms within the blood vessel wall.
Resumo:
SoxR is a transcription activator governing a cellular response to superoxide and nitric oxide in Escherichia coli. SoxR protein is a homodimer, and each monomer has a redox-active [2Fe–2S] cluster. Oxidation and reduction of the [2Fe–2S] clusters can reversibly activate and inactivate SoxR transcriptional activity. Here, we use electron paramagnetic resonance spectroscopy to follow the redox-switching process of SoxR protein in vivo. SoxR [2Fe–2S] clusters were in the fully reduced state during normal aerobic growth, but were completely oxidized after only 2-min aerobic exposure of the cells to superoxide-generating agents such as paraquat. The oxidized SoxR [2Fe–2S] clusters were rapidly re-reduced in vivo once the oxidative stress was removed. The in vivo kinetics of SoxR [2Fe–2S] cluster oxidation and reduction exactly paralleled the increase and decrease of transcription of soxS, the target gene for SoxR. The kinetic analysis also revealed that an oxidative stress-linked decrease in soxS mRNA stability contributes to the rapid attainment of a new steady state after SoxR activation. Such a redox stress-related change in soxS mRNA stability may represent a new level of biological control.
Resumo:
Photoreceptor proteins of the phytochrome family mediate light-induced inhibition of stem (hypocotyl) elongation during the development of photoautotrophy in seedlings. Analyses of overt mutant phenotypes have established the importance of phytochromes A and B (phyA and phyB) in this developmental process, but kinetic information that would augment emerging molecular models of phytochrome signal transduction is absent. We have addressed this deficiency by genetically dissecting phytochrome-response kinetics, after having solved the technical issues that previously limited growth studies of small Arabidopsis seedlings. We show here, with resolution on the order of minutes, that phyA initiated hypocotyl growth inhibition upon the onset of continuous red light. This primary contribution of phyA began to decrease after 3 hr of irradiation, the same time at which immunochemically detectable phyA disappeared and an exclusively phyB-dependent phase of inhibition began. The sequential and coordinated actions of phyA and phyB in red light were not observed in far-red light, which inhibited growth persistently through an exclusively phyA-mediated pathway.
Resumo:
A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.
Resumo:
We have previously shown that in HEp-2 cells, multivesicular bodies (MVBs) processing internalized epidermal growth factor–epidermal growth factor receptor complexes mature and fuse directly with lysosomes in which the complexes are degraded. The MVBs do not fuse with a prelysosomal compartment enriched in mannose 6-phosphate receptor (M6PR) as has been described in other cell types. Here we show that the cation-independent M6PR does not become enriched in the endocytic pathway en route to the lysosome, but if a pulse of M6PR or an M6PR ligand, cathepsin D, is followed, a significant fraction of these proteins are routed from the trans-Golgi to MVBs. Accumulation of M6PR does not occur because when the ligand dissociates, the receptor rapidly leaves the MVB. At steady state, most M6PR are distributed within the trans-Golgi and trans-Golgi network and in vacuolar structures distributed in the peripheral cytoplasm. We suggest that these M6PR-rich vacuoles are on the return route from MVBs to the trans-Golgi network and that a separate stable M6PR-rich compartment equivalent to the late endosome/prelysosome stage does not exist on the endosome–lysosome pathway in these cells.
Resumo:
Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca2+, which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segments without involvement of extrinsic regulatory molecules. Here we show that insulin-like growth factor-I (IGF-I), a paracrine factor released from the retinal pigment epithelium, alters phototransduction by rapidly increasing the cGMP sensitivity of CNG channels. The IGF-I-signaling pathway ultimately involves a protein tyrosine phosphatase that catalyzes dephosphorylation of a specific residue in the α-subunit of the rod CNG channel protein. IGF-I conjointly accelerates the kinetics and increases the amplitude of the light response, distinct from events that accompany adaptation. These effects of IGF-I could result from the enhancement of the cGMP sensitivity of CNG channels. Hence, in addition to long-term control of development and survival of rods, growth factors regulate phototransduction in the short term by modulating CNG channels.
Resumo:
In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting.
Resumo:
The kinetics of phototransduction of phytochrome A (phyA) and phytochrome B (phyB) were compared in etiolated Arabidopsis thaliana seedlings. The responses of hypocotyl growth, cotyledon unfolding, and expression of a light-harvesting chlorophyll a/b-binding protein of the photosystem II gene promoter fused to the coding region of β-glucuronidase (used as a reporter enzyme) were mediated by phyA under continuous far-red light (FR) and by phyB under continuous red light (R). The seedlings were exposed hourly either to n min of FR followed by 60 minus n min in darkness or to n min of R, 3 min of FR (to back-convert phyB to its inactive form), and 57 minus n min of darkness. For the three processes investigated here, the kinetics of phototransduction of phyB were faster than that of phyA. For instance, 15 min R h−1 (terminated with a FR pulse) were almost as effective as continuous R, whereas 15 min of FR h−1 caused less than 30% of the effect of continuous FR. This difference is interpreted in terms of divergence of signal transduction pathways downstream from phyA and phyB.
Resumo:
Ligand-activated epidermal growth factor receptors (EGFRs) associate with coated pit adaptor proteins (AP2) in vivo, implying a mechanism for receptor retention in coated pits during internalization. Using an in vitro binding assay, we localized the adaptor binding determinant to residues 970-991 of EGFRs and confirmed specificity by competition with a synthetic peptide corresponding to this sequence. A mutant EGFR lacking this AP2 binding determinant did not associate with AP2 in vivo but demonstrated internalization and down-regulation kinetics indistinguishable from its wild-type counterpart. Immunocytochemistry confirmed ligand-induced internalization of the mutant EGFR. These data suggest that endocytic determinants are distinct from AP2 binding determinants and that processes other than association with AP2 regulate endocytosis of EGFRs.