4 resultados para GRASSHOPPER KOSCIUSCOLA-TRISTIS
em National Center for Biotechnology Information - NCBI
Resumo:
The conserved organization of the Hox genes throughout the animal kingdom has become one of the major paradigms of evolutionary developmental biology. We have examined the organization of the Hox genes of the grasshopper, Schistocerca gregaria. We find that the grasshopper Hox cluster is over 700 kb long, and is not split into equivalents of the Antennapedia complex and the bithorax complex of Drosophila melanogaster. SgDax and probably also Sgzen, the grasshopper homologues of fushi-tarazu (ftz) and Zerknüllt (zen), respectively, are also in the cluster, showing that the non-homeotic Antp-class genes, “accessory genes,” are an ancient feature of insect Hox clusters.
Resumo:
Acid extracts and a resultant fraction from solid-phase extraction (SPE) of Romalea guttata crop and midgut tissues induce sorghum (Sorghum bicolor var. Rio) coleoptile growth in 24-h incubations an average of 49% above untreated controls. When combined with plant auxin, indole-3-acetic acid (IAA), the SPE fraction shows a synergistic reaction, yielding increases in coleoptile growth that average 295% above untreated controls and 8% above IAA standards. The interaction lowered the point of maximum sensitivity of IAA 3 orders of magnitude, resulting in a new IAA physiological set point at 10(-7) g/ml. This synergism suggests that contents in animal regurgitants making their way into plant tissue during feeding may produce a positive feedback in plant growth and development following herbivory. Such a process, also known as reward feedback, may exert major controls on ecosystem-level relationships in nature.
Resumo:
Predators of herbivorous animals can affect plant populations by altering herbivore density, behavior, or both. To test whether the indirect effect of predators on plants arises from density or behavioral responses in a herbivore population, we experimentally examined the dynamics of terrestrial food chains comprised of old field plants, leaf-chewing grasshoppers, and spider predators in Northeast Connecticut. To separate the effects of predators on herbivore density from the effects on herbivore behavior, we created two classes of spiders: (i) risk spiders that had their feeding mouth parts glued to render them incapable of killing prey and (ii) predator spiders that remained unmanipulated. We found that the effect of predators on plants resulted from predator-induced changes in herbivore behavior (shifts in activity time and diet selection) rather than from predator-induced changes in grasshopper density. Neither predator nor risk spiders had a significant effect on grasshopper density relative to a control. This demonstrates that the behavioral response of prey to predators can have a strong impact on the dynamics of terrestrial food chains. The results make a compelling case to examine behavioral as well as density effects in theoretical and empirical research on food chain dynamics.
Resumo:
In North America there are two generally recognized pathotypes (pathotypes 1 and 2) of the fungus Entomophaga grylli which show host-preferential infection of grasshopper subfamilies. Pathotype 3, discovered in Australia, has a broader grasshopper host range and was considered to be a good biocontrol agent. Between 1989 and 1991 pathotype 3 was introduced at two field sites in North Dakota. Since resting spores are morphologically indistinguishable among pathotypes, we used pathotype-specific DNA probes to confirm pathotype identification in E. grylli-infected grasshoppers collected at the release sites in 1992, 1993, and 1994. In 1992, up to 23% of E. grylli-infected grasshoppers of the subfamilies Melanoplinae, Oedipodinae, and Gomphocerinae were infected by pathotype 3, with no infections > 1 km from the release sites. In 1993, pathotype 3 infections declined to 1.7%. In 1994 grasshopper populations were low and no pathotype 3 infections were found. The frequency of pathotype 3 infection has declined to levels where its long-term survival in North America is questionable. Analyses of biocontrol releases are critical to evaluating the environmental risks associated with these ecological manipulations, and molecular probes are powerful tools for monitoring biocontrol releases.