2 resultados para GNSS (Global Navigation Satellite System)

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the Bacillus subtilis nrgAB operon is derepressed during nitrogen-limited growth. We have identified a gene, tnrA, that is required for the activation of nrgAB expression under these growth conditions. Analysis of the DNA sequence of the tnrA gene revealed that it encodes a protein with sequence similarity to GlnR, the repressor of the B. subtilis glutamine synthetase operon. The tnrA mutant has a pleiotropic phenotype. Compared with wild-type cells, the tnrA mutant is impaired in its ability to utilize allantoin, gamma-aminobutyrate, isoleucine, nitrate, urea, and valine as nitrogen sources. During nitrogen-limited growth, transcription of the nrgAB, nasB, gabP, and ure genes is significantly reduced in the tnrA mutant compared with the levels seen in wild-type cells. In contrast, the level of glnRA expression is 4-fold higher in the, tnrA mutant than in wild-type cells during nitrogen restriction. The phenotype of the tnrA mutant indicates that a global nitrogen regulatory system is present in B. subtilis and that this system is distinct from the Ntr regulatory system found in enteric bacteria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photosynthesis, biological nitrogen fixation, and carbon dioxide assimilation are three fundamental biological processes catalyzed by photosynthetic bacteria. In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms. The absence of the Calvin–Benson–Bassham (CBB) reductive pentose phosphate CO2 fixation pathway removes an important route for the dissipation of excess reducing power. Thus, the mutant strains develop alternative means to remove these reducing equivalents, resulting in the synthesis of large amounts of nitrogenase even in the presence of ammonia. This response is under the control of a global two-component signal transduction system previously found to regulate photosystem biosynthesis and the transcription of genes required for CO2 fixation through the CBB pathway and alternative routes. In addition, this two-component system directly controls the ability of these bacteria to grow under nitrogen-fixing conditions. These results indicate that there is a molecular link between the CBB and nitrogen fixation process, allowing the cell to overcome powerful control mechanisms to remove excess reducing power generated by photosynthesis and carbon metabolism. Furthermore, these results suggest that the two-component system integrates the expression of genes required for the three processes of photosynthesis, nitrogen fixation, and carbon dioxide fixation.