3 resultados para GENETIC CORRELATIONS

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because of their distinctive roles in reproduction, females and males are selected toward different optimal phenotypes. Ontogenetic conflict between the sexes arises when homologous traits are selected in different directions. The evolution of sexual dimorphism by sex-limited gene expression alleviates this problem. However, because the majority of genes are not sex-limited, the potential for substantial conflict may remain. Here we assess the degree of ontogenetic conflict in the fruit-fly, Drosophila melanogaster, by cloning 40 haploid genomes and measuring their Darwinian fitness in both sexes. The intersexual genetic correlations for juvenile viability, adult reproductive success, and total fitness were used to gauge potential conflict during development. First, as juveniles, where the fitness objectives of the two sexes appear to be similar, survival was strongly positively correlated across sexes. Second, after adult maturation, where gender roles diverge, a significant negative correlation for reproductive success was found. Finally, because of counterbalancing correlations in the juvenile and adult components, no intersexual correlation for total fitness was found. Highly significant genotype-by-gender interaction variance was measured for both adult and total fitness. These results demonstrate strong intersexual discord during development because of the expression of sexually antagonistic variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic basis of heterosis was investigated in an elite rice hybrid by using a molecular linkage map with 150 segregating loci covering the entire rice genome. Data for yield and three traits that were components of yield were collected over 2 years from replicated field trials of 250 F2:3 families. Genotypic variations explained from about 50% to more than 80% of the total variation. Interactions between genotypes and years were small compared with the main effects. A total of 32 quantitative trait loci (QTLs) were detected for the four traits; 12 were observed in both years and the remaining 20 were detected in only one year. Overdominance was observed for most of the QTLs for yield and also for a few QTLs for the component traits. Correlations between marker heterozygosity and trait expression were low, indicating that the overall heterozygosity made little contribution to heterosis. Digenic interactions, including additive by additive, additive by dominance, and dominance by dominance, were frequent and widespread in this population. The interactions involved large numbers of marker loci, most of which individually were not detectable on single-locus basis; many interactions among loci were detected in both years. The results provide strong evidence that epistasis plays a major role as the genetic basis of heterosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elucidating the genetic basis of human phenotypes is a major goal of contemporary geneticists. Logically, two fundamental and contrasting approaches are available, one that begins with a phenotype and concludes with the identification of a responsible gene or genes; the other that begins with a gene and works toward identifying one or more phenotypes resulting from allelic variation of it. This paper provides a conceptual overview of phenotype-based vs. gene-based procedures with emphasis on gene-based methods. A key feature of a gene-based approach is that laboratory effort first is devoted to developing an assay for mutations in the gene under regard; the assay then is applied to the evaluation of large numbers of unrelated individuals with a variety of phenotypes that are deemed potentially resulting from alleles at the gene. No effort is directed toward chromosomally mapping the loci responsible for the phenotypes scanned. Example is made of my laboratory’s successful use of a gene-based approach to identify genes causing hereditary diseases of the retina such as retinitis pigmentosa. Reductions in the cost and improvements in the speed of scanning individuals for DNA sequence anomalies may make a gene-based approach an efficient alternative to phenotype-based approaches to correlating genes with phenotypes.