17 resultados para GAP-JUNCTION CHANNELS
em National Center for Biotechnology Information - NCBI
Resumo:
Connexin (Cx) 43 and Cx40 are coexpressed in several tissues, including cardiac atrial and ventricular myocytes and vascular smooth muscle. It has been shown that these Cxs form homomeric/homotypic channels with distinct permeability and gating properties but do not form functional homomeric/heterotypic channels. If these Cxs were to form heteromeric channels, they could display functional properties not well predicted by the homomeric forms. We assessed this possibility by using A7r5 cells, an embryonic rat aortic smooth muscle cell line that coexpresses Cxs 43 and 40. Connexons (hemichannels), which were isolated from these cells by density centrifugation and immunoprecipitated with antibody against Cx43, contained Cx40. Similarly, antibody against Cx40 coimmunoprecipitated Cx43 from the same connexon fraction but only Cx40 from Cx (monomer) fractions. These results indicate that heteromeric connexons are formed by these Cxs in the A7r5 cells. The gap junction channels formed in the A7r5 cells display many unitary conductances distinct from homomeric/homotypic Cx43 or Cx40 channels. Voltage-dependent gating parameters in the A7r5 cells are also quite variable compared with cells that express only Cx40 or Cx43. These data indicate that Cxs 43 and 40 form functional heteromeric channels with unique gating and conductance properties.
Resumo:
Gap junction channels are formed by paired oligomeric membrane hemichannels called connexons, which are composed of proteins of the connexin family. Experiments with transfected cell lines and paired Xenopus oocytes have demonstrated that heterotypic intercellular channels which are formed by two connexons, each composed of a different connexin, can selectively occur. Studies by Stauffer [Stauffer, K. A. (1995) J. Biol. Chem. 270, 6768-6772] have shown that recombinant Cx26 and Cx32 coinfected into insect cells may form heteromeric connexons. By solubilizing and subfractionating individual connexons from ovine lenses, we show by immunoprecipitation that connexons can contain two different connexins forming heteromeric assemblies in vivo.
Resumo:
Gap junctions are plaque-like clusters of intercellular channels that mediate intercellular communication. Each of two adjoining cells contains a connexon unit which makes up half of the whole channel. Gap junction channels are formed from a multigene family of proteins called connexins, and different connexins may be coexpressed by a single cell type and found within the same plaque. Rodent gap junctions contain two proteins, connexins 32 and 26. Use of a scanning transmission electron microscope for mass analysis of rodent gap junction plaques and split gap junctions prvided evidence consistent with a model in which the channels may be made from (i) solely connexin 26, (ii) solely connexin 32, or (iii) mixtures of connexin 26 and connexin 32 in which the two connexons are made entirely of connexin 26 and connexin 32. The different types of channels segregate into distinct domains, implying tha connexon channels self-associate to give a non-random distribution within tissues. Since each connexin confers distinct physiological properties on its membrane channels, these results imply that the physiological properties of channels can be tailored by mixing the constituent proteins within these macromolecular structures.
Resumo:
Gap junction channels are formed by members of the connexin gene family and mediate direct intercellular communication through linked hemichannels (connexons) from each of two adjacent cells. While for most connexins, the hemichannels appear to require an apposing hemichannel to open, macroscopic currents obtained from Xenopus oocytes expressing rat Cx46 suggested that some hemichannels can be readily opened by membrane depolarization [Paul, D. L., Ebihara, L., Takemoto, L. J., Swenson, K. I. & Goodenough, D. A. (1991), J. Cell Biol. 115, 1077-1089]. Here we demonstrate by single channel recording that hemichannels comprised of rat Cx46 exhibit complex voltage gating consistent with there being two distinct gating mechanisms. One mechanism partially closes Cx46 hemichannels from a fully open state, gammaopen, to a substate, gammasub, about one-third of the conductance of gammaopen; these transitions occur when the cell is depolarized to inside positive voltages, consistent with gating by transjunctional voltage in Cx46 gap junctions. The other gating mechanism closes Cx46 hemichannels to a fully closed state, gammaclosed, on hyperpolarization to inside negative voltages and has unusual characteristics; transitions between gammaclosed and gammaopen appear slow (10-20 ms), often involving several transient substates distinct from gammasub. The polarity of activation and kinetics of this latter form of gating indicate that it is the mechanism by which these hemichannels open in the cell surface membrane when unapposed by another hemichannel. Cx46 hemichannels display a substantial preference for cations over anions, yet have a large unitary conductance (approximately 300 pS) and a relatively large pore as inferred from permeability to tetraethylammonium (approximately 8.5 angstroms diameter). These hemichannels open at physiological voltages and could induce substantial cation fluxes in cells expressing Cx46.
Resumo:
To examine the trafficking, assembly, and turnover of connexin43 (Cx43) in living cells, we used an enhanced red-shifted mutant of green fluorescent protein (GFP) to construct a Cx43-GFP chimera. When cDNA encoding Cx43-GFP was transfected into communication-competent normal rat kidney cells, Cx43-negative Madin–Darby canine kidney (MDCK) cells, or communication-deficient Neuro2A or HeLa cells, the fusion protein of predicted length was expressed, transported, and assembled into gap junctions that exhibited the classical pentalaminar profile. Dye transfer studies showed that Cx43-GFP formed functional gap junction channels when transfected into otherwise communication-deficient HeLa or Neuro2A cells. Live imaging of Cx43-GFP in MDCK cells revealed that many gap junction plaques remained relatively immobile, whereas others coalesced laterally within the plasma membrane. Time-lapse imaging of live MDCK cells also revealed that Cx43-GFP was transported via highly mobile transport intermediates that could be divided into two size classes of <0.5 μm and 0.5–1.5 μm. In some cases, the larger intracellular Cx43-GFP transport intermediates were observed to form from the internalization of gap junctions, whereas the smaller transport intermediates may represent other routes of trafficking to or from the plasma membrane. The localization of Cx43-GFP in two transport compartments suggests that the dynamic formation and turnover of connexins may involve at least two distinct pathways.
Resumo:
Electrical coupling by gap junctions is an important form of cell-to-cell communication in early brain development. Whereas glial cells remain electrically coupled at postnatal stages, adult vertebrate neurons were thought to communicate mainly via chemical synapses. There is now accumulating evidence that in certain neuronal cell populations the capacity for electrical signaling by gap junction channels is still present in the adult. Here we identified electrically coupled pairs of neurons between postnatal days 12 and 18 in rat visual cortex, somatosensory cortex, and hippocampus. Notably, coupling was found both between pairs of inhibitory neurons and between inhibitory and excitatory neurons. Molecular analysis by single-cell reverse transcription–PCR revealed a differential expression pattern of connexins in these identified neurons.
Resumo:
Gap junctional communication between microglia was investigated at rat brain stab wounds and in primary cultures of rat and mouse cells. Under resting conditions, rat microglia (FITC-isolectin-B4-reactive cells) were sparsely distributed in the neocortex, and most (95%) were not immunoreactive for Cx43, a gap junction protein subunit. At brain stab wounds, microglia progressively accumulated over several days and formed aggregates that frequently showed Cx43 immunoreactivity at interfaces between cells. In primary culture, microglia showed low levels of Cx43 determined by Western blotting, diffuse intracellular Cx43 immunoreactivity, and a low incidence of dye coupling. Treatment with the immunostimulant bacterial lipopolysaccharide (LPS) or the cytokines interferon-γ (INF-γ) or tumor necrosis factor-α (TNF-α) one at a time did not increase the incidence of dye coupling. However, microglia treated with INF-γ plus LPS showed a dramatic increase in dye coupling that was prevented by coapplication of an anti-TNF-α antibody, suggesting the release and autocrine action of TNF-α. Treatment with INF-γ plus TNF-α also greatly increased the incidence of dye coupling and the Cx43 levels with translocation of Cx43 to cell–cell contacts. The cytokine-induced dye coupling was reversibly inhibited by 18α-glycyrrhetinic acid, a gap junction blocker. Cultured mouse microglia also expressed Cx43 and developed dye coupling upon treatment with cytokines, but microglia from homozygous Cx43-deficient mice did not develop significant dye coupling after treatment with either INF-γ plus LPS or INF-γ plus TNF-α. This report demonstrates that microglia can communicate with each other through gap junctions that are induced by inflammatory cytokines, a process that may be important in the elaboration of the inflammatory response.
Resumo:
Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.
Resumo:
Levels and subcellular distribution of connexin 43 (Cx43), a gap junction protein, were studied in hamster leukocytes before and after activation with endotoxin (lipopolysaccharide, LPS) both in vitro and in vivo. Untreated leukocytes did not express Cx43. However, Cx43 was clearly detectable by indirect immunofluorescence in cells treated in vitro with LPS (1 micrograms/ml, 3 hr). Cx43 was also detected in leukocytes obtained from the peritoneal cavity 5-7 days after LPS-induced inflammation. In some leukocytes that formed clusters Cx43 immunoreactivity was present at appositional membranes, suggesting formation of homotypic gap junctions. In cell homogenates of activated peritoneal macrophages, Cx43, detected by Western blot analysis, was mostly unphosphorylated. A second in vivo inflammatory condition studied was that induced by ischemia-reperfusion of the hamster cheek pouch. In this system, leukocytes that adhered to venular endothelial cells after 1 hr of ischemia, followed by 1 hr of reperfusion, expressed Cx43. Electron microscope observations revealed small close appositions, putative gap junctions, at leukocyte-endothelial cell and leukocyte-leukocyte contacts. These results indicate that the expression of Cx43 can be induced in leukocytes during an inflammatory response which might allow for heterotypic or homotypic intercellular gap junctional communication. Gap junctions may play a role in leukocyte extravasation.
Resumo:
Oleamide is an endogenous fatty acid primary amide that possesses sleep-inducing properties in animals and that has been shown to effect serotonergic receptor responses and block gap junction communication. Herein, the potentiation of the 5-HT1A receptor response is disclosed, and a study of the structural features of oleamide required for potentiation of the 5-HT2A and 5-HT1A response to serotonin (5-HT) is described. Of the naturally occurring fatty acids, the primary amide of oleic acid (oleamide) is the most effective at potentiating the 5-HT2A receptor response. The structural features required for activity were found to be highly selective. The presence, position, and stereochemistry of the Δ9-cis double bond is required, and even subtle structural variations reduce or eliminate activity. Secondary or tertiary amides may replace the primary amide but follow a well defined relationship requiring small amide substituents, suggesting that the carboxamide serves as a hydrogen bond acceptor but not donor. Alternative modifications at the carboxamide as well as modifications of the methyl terminus or the hydrocarbon region spanning the carboxamide and double bond typically eliminate activity. A less extensive study of the 5-HT1A potentiation revealed that it is more tolerant and accommodates a wider range of structural modifications. An interesting set of analogs was identified that inhibit rather than potentiate the 5-HT2A, but not the 5-HT1A, receptor response, further suggesting that such analogs may permit the selective modulation of serotonin receptor subtypes and even have opposing effects on the different subtypes.
Resumo:
Focally evoked calcium waves in astrocyte cultures have been thought to propagate by gap-junction-mediated intercellular passage of chemical signal(s). In contrast to this mechanism we observed isolated astrocytes, which had no physical contact with other astrocytes in the culture, participating in a calcium wave. This observation requires an extracellular route of astrocyte signaling. To directly test for extracellular signaling we made cell-free lanes 10–300 μm wide in confluent cultures by deleting astrocytes with a glass pipette. After 4–8 hr of recovery, regions of confluent astrocytes separated by lanes devoid of cells were easily located. Electrical stimulation was used to initiate calcium waves. Waves crossed narrow (<120 μm) cell-free lanes in 15 of 36 cases, but failed to cross lanes wider than 120 μm in eight of eight cases. The probability of crossing narrow lanes was not correlated with the distance from the stimulation site, suggesting that cells along the path of the calcium wave release the extracellular messenger(s). Calculated velocity across the acellular lanes was not significantly different from velocity through regions of confluent astrocytes. Focal superfusion altered both the extent and the direction of calcium waves in confluent regions. These data indicate that extracellular signals may play a role in astrocyte–astrocyte communication in situ.
Resumo:
Forced expression of gap junction proteins, connexins, enables gap junction-deficient cell lines to propagate intercellular calcium waves. Here, we show that ATP secretion from the poorly coupled cell lines, C6 glioma, HeLa, and U373 glioblastoma, is potentiated 5- to 15-fold by connexin expression. ATP release required purinergic receptor-activated intracellular Ca2+ mobilization and was inhibited by Cl− channel blockers. Calcium wave propagation also was reduced by purinergic receptor antagonists and by Cl− channel blockers but insensitive to gap junction inhibitors. These observations suggest that cell-to-cell signaling associated with connexin expression results from enhanced ATP release and not, as previously believed, from an increase in intercellular coupling.
Resumo:
The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mobilization from glycogen stores, when compared with wild-type liver. Thus, connexin32-containing gap junctions are essential in mouse liver for maximal intercellular propagation of the noradrenaline signal from the periportal (upstream) area, where it is received from sympathetic nerve endings, to perivenous (downstream) hepatocytes. In connexin32-defective liver, the amount of connexin26 protein expressed was found to be lower than in wild-type liver, and the total area of gap junction plaques was approximately 1000-fold smaller than in wild-type liver. In contrast to patients with connexin32 defects suffering from X chromosome-linked Charcot-Marie-Tooth disease (CMTX) due to demyelination in Schwann cells of peripheral nerves, connexin32-deficient mice did not show neurological abnormalities when analyzed at 3 months of age. It is possible, however, that they may develop neurodegenerative symptoms at older age.
Resumo:
In gene therapy to treat cancer, typically only a fraction of the tumor cells can be successfully transfected with a gene. However, in the case of brain tumor therapy with the thymidine kinase gene from herpes simplex virus (HSV-tk), not only the cells transfected with the gene but also neighboring others can be killed in the presence of ganciclovir. Such a "bystander" effect is reminiscent of our previous observation that the effect of certain therapeutic agents may be enhanced by their diffusion through gap junctional intercellular communication (GJIC). Herein, we present the evidence, from in vitro studies, that gap junctions could indeed be responsible for such a gene therapy bystander effect. We used HeLa cells for this purpose, since they show very little, if any, ability to communicate through gap junctions. When HeLa cells were transfected with HSV-tk gene and cocultured with nontransfected cells, only HSV-tk-transfected HeLa cells (tk+) were killed by ganciclovir. However, when HeLa cells transfected with a gene encoding for the gap junction protein, connexin 43 (Cx43), were used, not only tk+ cells, but also tk- cells were killed, presumably due to the transfer, via Cx43-mediated GJIC, of toxic ganciclovir molecules phosphorylated by HSV-tk to the tk- cells. Such bystander effect was not observed when tk+ and tk- cells were cocultured without direct cell-cell contact between those two types of cells. Thus, our results give strong evidence that the bystander effect seen in HSV-tk gene therapy may be due to Cx-mediated GJIC.
Resumo:
While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+ concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+ concentration, produced by patterned synaptic activity or intradendritic Ca2+ injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.