6 resultados para GA3

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-day exposure of the grass Lolium temulentum may regulate flowering via changes in gibberellin (GA) levels. Therefore, we have examined both GA levels and expression of a MYB transcription factor that is specific to the GA signal transduction pathway in monocots. This MYB gene from L. temulentum shows over 90% nucleotide identity with the barley and rice GAMYB genes, and, like them, gibberellic acid (GA3) up-regulates its expression in the seed. Furthermore, cDNAs of both the barley and L. temulentum GAMYB show the same simple patterns of hybridization with digests of L. temulentum genomic DNA. Compared with vegetative shoot apices of L. temulentum, the in situ mRNA expression of LtGAMYB does not change during the earliest steps of “floral” initiation at the apex. However, by 100 h (the double-ridge stage of flowering) its expression increased substantially and was highest in the terminal and lateral spikelet sites. Thereafter, expression declined overall but then increased within stamen primordia. Prior to increased LtGAMYB expression, long-day exposure sufficient to induce flowering led to increased (5- to 20-fold) levels of GA1 and GA4 in the leaf. Thus, increases first in GA level in the leaf followed by increased expression of LtGAMYB in the apex suggest important signaling and/or response roles in flowering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arabidopsis GA3 cDNA was expressed in yeast (Saccharomyces cerevisiae) and the ability of the transformed yeast cells to metabolize ent-kaurene was tested. We show by full-scan gas chromatography-mass spectrometry that the transformed cells produce ent-kaurenoic acid, and demonstrate that the single enzyme GA3 (ent-kaurene oxidase) catalyzes the three steps of gibberellin biosynthesis from ent-kaurene to ent-kaurenoic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cereal aleurone responses to gibberellic acid (GA3) include activation of synthesis of hydrolytic enzymes and acidification of the external medium. We have studied the effect of the pH of the incubation medium on the response of wheat (Triticum aestivum) aleurone cells to GA3. De-embryonated half grains show the capacity for GA3-activated medium acidification when incubation is carried out at pH 6.0 to 7.0 but not at lower pHs. In addition, the activating effect of GA3 on the expression of carboxypeptidase III and thiol protease genes is more efficient when the hormone treatment is carried out at neutral pH. In situ pH staining showed that starchy endosperm acidification takes place upon imbibition and advances from the embryo to the distal part of the grain. In situ hybridization experiments showed a similar pattern of expression of a carboxypeptidase III gene, which is up-regulated by GA3 in aleurone cells. However, aleurone gene expression precedes starchy endosperm acidification. These findings imply that in vivo GA perception by the aleurone layer takes place at neutral pH and suggest that the acidification of the starchy endosperm is regulated by GA3 in germinated wheat grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rice (Oryza sativa L.) homeobox gene OSH1 causes morphological alterations when ectopically expressed in transgenic rice, Arabidopsis thaliana, and tobacco (Nicotiana tabacum L.) and is therefore believed to function as a morphological regulator gene. To determine the relationship between OSH1 expression and morphological alterations, we analyzed the changes in hormone levels in transgenic tobacco plants exhibiting abnormal morphology. Levels of the plant hormones indole-3-acetic acid, abscisic acid, gibberellin (GA), and cytokinin (zeatin and trans-zeatin [Z]) were measured in leaves of OSH1-transformed and wild-type tobacco. Altered plant morphology was found to correlate with changes in hormone levels. The more severe the alteration in phenotype of transgenic tobacco, the greater were the changes in endogenous hormone levels. Overall, GA1 and GA4 levels decreased and abscisic acid levels increased compared with wild-type plants. Moreover, in the transformants, Z (active form of cytokinin) levels were higher and the ratio of Z to Z riboside (inactive form) also increased. When GA3 was supplied to the shoot apex of transformants, internode extension was restored and normal leaf morphology was also partially restored. However, such GA3-treated plants still exhibited some morphological abnormalities compared with wild-type plants. Based on these data, we propose the hypothesis that OSH1 affects plant hormone metabolism either directly or indirectly and thereby causes changes in plant development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have cloned two gibberellin (GA) 3β-hydroxylase genes, OsGA3ox1 and OsGA3ox2, from rice by screening a genomic library with a DNA fragment obtained by PCR using degenerate primers. We have used full-scan GC-MS and Kovats retention indices to show function for the two encoded recombinant fusion proteins. Both proteins show 3β-hydroxylase activity for the steps GA20 to GA1, GA5 to GA3, GA44 to GA38, and GA9 to GA4. In addition, indirect evidence suggests that the OsGA3ox1 protein also has 2,3-desaturase activity, which catalyzes the steps GA9 to 2,3-dehydro-GA9 and GA20 to GA5 (2,3-dehydro GA20), and 2β-hydroxylase activity, which catalyzes the steps GA1 to GA8 and GA4 to GA34. Molecular and linkage analysis maps the OsGA3ox1 gene to the distal end of the short arm of chromosome 5; the OsGA3ox2 gene maps to the distal end of the short arm of chromosome 1 that corresponds to the D18 locus. The association of the OsGA3ox2 gene with the d18 locus is confirmed by sequence and complementation analysis of three d18 alleles. Complementation of the d18-AD allele with the OxGA3ox2 gene results in transgenic plants with a normal phenotype. Although both genes show transient expression, the highest level for OsGA3ox1 is from unopened flower. The highest level for OsGA3ox2 is from elongating leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plants, gibberellin (GA)-responding mutants have been used as tools to identify the genes that control specific steps in the GA-biosynthetic pathway. They have also been used to determine which native GAs are active per se, i.e., further metabolism is not necessary for bioactivity. We present metabolic evidence that the D1 gene of maize (Zea mays L.) controls the three biosynthetic steps: GA20 to GA1, Ga20 to GA5, and GA5 to GA3. We also present evidence that three gibberellins, GA1, GA5, and GA3, have per se activity in stimulating shoot elongation in maize. The metabolic evidence comes from the injection of [17-13C,3H]GA20 and [17-13C,3H]GA5 into seedlings of d1 and controls (normal and d5), followed by isolation and identification of the 13C-labeled metabolites by full-scan GC-MS and Kovats retention index. For the controls, GA20 was metabolized to GA1,GA3, and GA5; GA5 was metabolized to GA3. For the d1 mutant, GA20 was not metabolized to GA1, GA3, or to GA5, and GA5 was not metabolized to GA3. The bioassay evidence is based on dosage response curves using d1 seedlings for assay. GA1, GA3, and GA5 had similar bioactivities, and they were 10-times more active than GA20.