8 resultados para Günther, of Schwarzburg, 1304-1349.

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport of peptides across the membrane of the endoplasmic reticulum for assembly with MHC class I molecules is an essential step in antigen presentation to cytotoxic T cells. This task is performed by the major histocompatibility complex-encoded transporter associated with antigen processing (TAP). Using a combinatorial approach we have analyzed the substrate specificity of human TAP at high resolution and in the absence of any given sequence context, revealing the contribution of each peptide residue in stabilizing binding to TAP. Human TAP was found to be highly selective with peptide affinities covering at least three orders of magnitude. Interestingly, the selectivity is not equally distributed over the substrate. Only the N-terminal three positions and the C-terminal residue are critical, whereas effects from other peptide positions are negligible. A major influence from the peptide backbone was uncovered by peptide scans and libraries containing d amino acids. Again, independent of peptide length, critical positions were clustered near the peptide termini. These approaches demonstrate that human TAP is selective, with residues determining the affinity located in distinct regions, and point to the role of the peptide backbone in binding to TAP. This binding mode of TAP has implications in an optimized repertoire selection and in a coevolution with the major histocompatibility complex/T cell receptor complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein translocation into peroxisomes takes place via recognition of a peroxisomal targeting signal present at either the extreme C termini (PTS1) or N termini (PTS2) of matrix proteins. In mammals and yeast, the peroxisomal targeting signal receptor, Pex5p, recognizes the PTS1 consisting of -SKL or variants thereof. Although many plant peroxisomal matrix proteins are transported through the PTS1 pathway, little is known about the PTS1 receptor or any other peroxisome assembly protein from plants. We cloned tobacco (Nicotiana tabacum) cDNAs encoding Pex5p (NtPEX5) based on the protein’s interaction with a PTS1-containing protein in the yeast two-hybrid system. Nucleotide sequence analysis revealed that the tobacco Pex5p contains seven tetratricopeptide repeats and that NtPEX5 shares greater sequence similarity with its homolog from humans than from yeast. Expression of NtPEX5 fusion proteins, consisting of the N-terminal part of yeast Pex5p and the C-terminal region of NtPEX5, in a Saccharomyces cerevisiae pex5 mutant restored protein translocation into peroxisomes. These experiments confirmed the identity of the tobacco protein as a PTS1 receptor and indicated that components of the peroxisomal translocation apparatus are conserved functionally. Two-hybrid assays showed that NtPEX5 interacts with a wide range of PTS1 variants that also interact with the human Pex5p. Interestingly, the C-terminal residues of some of these peptides deviated from the established plant PTS1 consensus sequence. We conclude that there are significant sequence and functional similarities between the plant and human Pex5ps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2C is a typical alloreactive cytotoxic T lymphocyte clone that recognizes two different ligands. These ligands are adducts of the allo-major histocompatibility complex (MHC) molecule H-2Ld and an endogenous octapeptide, and of the self-MHC molecule H-2Kb and another peptide. MHC-binding and T-cell assays with synthetic peptides in combination with molecular modeling studies were employed to analyze the structural basis for this crossreactivity. The molecular surfaces of the two complexes differ greatly in densities and distributions of positive and negative charges. However, modifications of the peptides that increase similarity decrease the capacities of the resulting MHC peptide complexes to induce T-cell responses. Moreover, the roles of the peptides in ligand recognition are different for self- and allo-MHC-restricted T-cell responses. The self-MHC-restricted T-cell responses were finely tuned to recognition of the peptide. The allo-MHC-restricted responses, on the other hand, largely ignore modifications of the peptide. The results strongly suggest that adaptation of the T-cell receptor to the different ligand structures, rather than molecular mimicry by the ligands, is the basis for the crossreactivity of 2C. This conclusion has important implications for T-cell immunology and for the understanding of immunological disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Squalene epoxidase, encoded by the ERG1 gene in yeast, is a key enzyme of sterol biosynthesis. Analysis of subcellular fractions revealed that squalene epoxidase was present in the microsomal fraction (30,000 × g) and also cofractionated with lipid particles. A dual localization of Erg1p was confirmed by immunofluorescence microscopy. On the basis of the distribution of marker proteins, 62% of cellular Erg1p could be assigned to the endoplasmic reticulum and 38% to lipid particles in late logarithmic-phase cells. In contrast, sterol Δ24-methyltransferase (Erg6p), an enzyme catalyzing a late step in sterol biosynthesis, was found mainly in lipid particles cofractionating with triacylglycerols and steryl esters. The relative distribution of Erg1p between the endoplasmic reticulum and lipid particles changes during growth. Squalene epoxidase (Erg1p) was absent in an erg1 disruptant strain and was induced fivefold in lipid particles and in the endoplasmic reticulum when the ERG1 gene was overexpressed from a multicopy plasmid. The amount of squalene epoxidase in both compartments was also induced approximately fivefold by treatment of yeast cells with terbinafine, an inhibitor of the fungal squalene epoxidase. In contrast to the distribution of the protein, enzymatic activity of squalene epoxidase was only detectable in the endoplasmic reticulum but was absent from isolated lipid particles. When lipid particles of the wild-type strain and microsomes of an erg1 disruptant were mixed, squalene epoxidase activity was partially restored. These findings suggest that factor(s) present in the endoplasmic reticulum are required for squalene epoxidase activity. Close contact between lipid particles and endoplasmic reticulum may be necessary for a concerted action of these two compartments in sterol biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants are continuously subjected to UV-B radiation (UV-B; 280–320 nm) as a component of sunlight causing damage to the genome. For elimination of DNA damage, a set of repair mechanisms, mainly photoreactivation, excision, and recombination repair, has evolved. Whereas photoreactivation and excision repair have been intensely studied during the last few years, recombination repair, its regulation, and its interrelationship with photoreactivation in response to UV-B-induced DNA damage is still poorly understood. In this study, we analyzed somatic homologous recombination in a transgenic Arabidopsis line carrying a β-glucuronidase gene as a recombination marker and in offsprings of crosses of this line with a photolyase deficient uvr2–1 mutant. UV-B radiation stimulated recombination frequencies in a dose-dependent manner correlating linearly with cyclobutane pyrimidine dimer (CPD) levels. Genetic deficiency for CPD-specific photoreactivation resulted in a drastic increase of recombination events, indicating that homologous recombination might be directly involved in eliminating CPD damage. UV-B irradiation stimulated recombination mainly in the presence of photosynthetic active radiation (400–700 nm) irrespective of photolyase activities. Our results suggest that UV-B-induced recombination processes may depend on energy supply derived from photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three different pathways lead to the synthesis of phosphatidylethanolamine (PtdEtn) in yeast, one of which is localized to the inner mitochondrial membrane. To study the contribution of each of these pathways, we constructed a series of deletion mutants in which different combinations of the pathways are blocked. Analysis of their growth phenotypes revealed that a minimal level of PtdEtn is essential for growth. On fermentable carbon sources such as glucose, endogenous ethanolaminephosphate provided by sphingolipid catabolism is sufficient to allow synthesis of the essential amount of PtdEtn through the cytidyldiphosphate (CDP)-ethanolamine pathway. On nonfermentable carbon sources, however, a higher level of PtdEtn is required for growth, and the amounts of PtdEtn produced through the CDP-ethanolamine pathway and by extramitochondrial phosphatidylserine decarboxylase 2 are not sufficient to maintain growth unless the action of the former pathway is enhanced by supplementing the growth medium with ethanolamine. Thus, in the absence of such supplementation, production of PtdEtn by mitochondrial phosphatidylserine decarboxylase 1 becomes essential. In psd1Δ strains or cho1Δ strains (defective in phosphatidylserine synthesis), which contain decreased amounts of PtdEtn, the growth rate on nonfermentable carbon sources correlates with the content of PtdEtn in mitochondria, suggesting that import of PtdEtn into this organelle becomes growth limiting. Although morphological and biochemical analysis revealed no obvious defects of PtdEtn-depleted mitochondria, the mutants exhibited an enhanced formation of respiration-deficient cells. Synthesis of glycosylphosphatidylinositol-anchored proteins is also impaired in PtdEtn-depleted cells, as demonstrated by delayed maturation of Gas1p. Carboxypeptidase Y and invertase, on the other hand, were processed with wild-type kinetics. Thus, PtdEtn depletion does not affect protein secretion in general, suggesting that high levels of nonbilayer-forming lipids such as PtdEtn are not essential for membrane vesicle fusion processes in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vigilance, anxiety, epileptic activity, and muscle tone can be modulated by drugs acting at the benzodiazepine (BZ) site of gamma-aminobutyric acid type A (GABAA) receptors. In vivo, BZ sites are potential targets for endogenous ligands regulating the corresponding central nervous system states. To assess the physiological relevance of BZ sites, mice were generated containing GABAA receptors devoid of BZ sites. Following targeted disruption of the gamma 2 subunit gene, 94% of the BZ sites were absent in brain of neonatal mice, while the number of GABA sites was only slightly reduced. Except for the gamma 2 subunit, the level of expression and the regional and cellular distribution of the major GABAA receptor subunits were unaltered. The single channel main conductance level and the Hill coefficient were reduced to values consistent with recombinant GABAA receptors composed of alpha and beta subunits. The GABA response was potentiated by pentobarbital but not by flunitrazepam. Diazepam was inactive behaviorally. Thus, the gamma 2 subunit is dispensable for the assembly of functional GABAA receptors but is required for normal channel conductance and the formation of BZ sites in vivo. BZ sites are not essential for embryonic development, as suggested by the normal body weight and histology of newborn mice. Postnatally, however, the reduced GABAA receptor function is associated with retarded growth, sensorimotor dysfunction, and drastically reduced life-span. The lack of postnatal GABAA receptor regulation by endogenous ligands of BZ sites might contribute to this phenotype.