7 resultados para Gérard-Desrivières
em National Center for Biotechnology Information - NCBI
Resumo:
Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.
Resumo:
Although polyomavirus JC (JCV) is the proven pathogen of progressive multifocal leukoencephalopathy, the fatal demyelinating disease, this virus is ubiquitous as a usually harmless symbiote among human beings. JCV propagates in the adult kidney and excretes its progeny in urine, from which JCV DNA can readily be recovered. The main mode of transmission of JCV is from parents to children through long cohabitation. In this study, we collected a substantial number of urine samples from native inhabitants of 34 countries in Europe, Africa, and Asia. A 610-bp segment of JCV DNA was amplified from each urine sample, and its DNA sequence was determined. A worldwide phylogenetic tree subsequently constructed revealed the presence of nine subtypes including minor ones. Five subtypes (EU, Af2, B1, SC, and CY) occupied rather large territories that overlapped with each other at their boundaries. The entire Europe, northern Africa, and western Asia were the domain of EU, whereas the domain of Af2 included nearly all of Africa and southwestern Asia all the way to the northeastern edge of India. Partially overlapping domains in Asia were occupied by subtypes B1, SC, and CY. Of particular interest was the recovery of JCV subtypes in a pocket or pockets that were separated by great geographic distances from the main domains of those subtypes. Certain of these pockets can readily be explained by recent migrations of human populations carrying these subtypes. Overall, it appears that JCV genotyping promises to reveal previously unknown human migration routes: ancient as well as recent.
Resumo:
Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.
Resumo:
In the mammalian pancreas, the endocrine cell types of the islets of Langerhans, including the α-, β-, δ-, and pancreatic polypeptide cells as well as the exocrine cells, derive from foregut endodermal progenitors. Recent genetic studies have identified a network of transcription factors, including Pdx1, Isl1, Pax4, Pax6, NeuroD, Nkx2.2, and Hlxb9, regulating the development of islet cells at different stages, but the molecular mechanisms controlling the specification of pancreatic endocrine precursors remain unknown. neurogenin3 (ngn3) is a member of a family of basic helix–loop–helix transcription factors that is involved in the determination of neural precursor cells in the neuroectoderm. ngn3 is expressed in discrete regions of the nervous system and in scattered cells in the embryonic pancreas. We show herein that ngn3-positive cells coexpress neither insulin nor glucagon, suggesting that ngn3 marks early precursors of pancreatic endocrine cells. Mice lacking ngn3 function fail to generate any pancreatic endocrine cells and die postnatally from diabetes. Expression of Isl1, Pax4, Pax6, and NeuroD is lost, and endocrine precursors are lacking in the mutant pancreatic epithelium. Thus, ngn3 is required for the specification of a common precursor for the four pancreatic endocrine cell types.
Resumo:
Methylation of cytosine in the 5 position of the pyrimidine ring is a major modification of the DNA in most organisms. In eukaryotes, the distribution and number of 5-methylcytosines (5mC) along the DNA is heritable but can also change with the developmental state of the cell and as a response to modifications of the environment. While DNA methylation probably has a number of functions, scientific interest has recently focused on the gene silencing effect methylation can have in eukaryotic cells. In particular, the discovery of changes in the methylation level during cancer development has increased the interest in this field. In the past, a vast amount of data has been generated with different levels of resolution ranging from 5mC content of total DNA to the methylation status of single nucleotides. We present here a database for DNA methylation data that attempts to unify these results in a common resource. The database is accessible via WWW (http://www.methdb.de). It stores information about the origin of the investigated sample and the experimental procedure, and contains the DNA methylation data. Query masks allow for searching for 5mC content, species, tissue, gene, sex, phenotype, sequence ID and DNA type. The output lists all available information including the relative gene expression level. DNA methylation patterns and methylation profiles are shown both as a graphical representation and as G/A/T/C/5mC-sequences or tables with sequence positions and methylation levels, respectively.
Resumo:
A common feature of many metabolic pathways is their control by retinoid X receptor (RXR) heterodimers. Dysregulation of such metabolic pathways can lead to the development of atherosclerosis, a disease influenced by both systemic and local factors. Here we analyzed the effects of activation of RXR and some of its heterodimers in apolipoprotein E −/− mice, a well established animal model of atherosclerosis. An RXR agonist drastically reduced the development of atherosclerosis. In addition, a ligand for the peroxisome proliferator-activated receptor (PPAR)γ and a dual agonist of both PPARα and PPARγ had moderate inhibitory effects. Both RXR and liver X receptor (LXR) agonists induced ATP-binding cassette protein 1 (ABC-1) expression and stimulated ABC-1-mediated cholesterol efflux from macrophages from wild-type, but not from LXRα and β double −/−, mice. Hence, activation of ABC-1-mediated cholesterol efflux by the RXR/LXR heterodimer might contribute to the beneficial effects of rexinoids on atherosclerosis and warrant further evaluation of RXR/LXR agonists in prevention and treatment of atherosclerosis.