6 resultados para Fusarium wilts

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a synthetic chemical, was applied as a foliar spray to tomato (Lycopersicon esculentum) plants and evaluated for its potential to confer increased resistance against the soil-borne pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL). In nontreated tomato plants all root tissues were massively colonized by FORL hyphae. Pathogen ingress toward the vascular stele was accompanied by severe host cell alterations, including cell wall breakdown. In BTH-treated plants striking differences in the rate and extent of fungal colonization were observed. Pathogen growth was restricted to the epidermis and the outer cortex, and fungal ingress was apparently halted by the formation of callose-enriched wall appositions at sites of fungal penetration. In addition, aggregated deposits, which frequently established close contact with the invading hyphae, accumulated in densely colonized epidermal cells and filled most intercellular spaces. Upon incubation of sections with gold-complexed laccase for localization of phenolic-like compounds, a slight deposition of gold particles was observed over both the host cell walls and the wall appositions. Labeling was also detected over the walls of fungal cells showing signs of obvious alteration ranging from cytoplasm disorganization to protoplasm retraction. We provide evidence that foliar applications of BTH sensitize susceptible tomato plants to react more rapidly and more efficiently to FORL attack through the formation of protective layers at sites of potential fungal entry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lactonohydrolase from Fusarium oxysporum AKU 3702 is an enzyme catalyzing the hydrolysis of aldonate lactones to the corresponding aldonic acids. The amino acid sequences of the NH2 terminus and internal peptide fragments of the enzyme were determined to prepare synthetic oligonucleotides as primers for the PCR. An approximate 1,000-base genomic DNA fragment thus amplified was used as the probe to clone both genomic DNA and cDNA for the enzyme. The lactonohydrolase genomic gene consists of six exons separated by five short introns. A novel type of RNA editing, in which lactonohydrolase mRNA included the insertion of guanosine and cytidine residues, was observed. The predicted amino acid sequence of the cloned lactonohydrolase cDNA showed significant similarity to those of the gluconolactonase from Zymomonas mobilis, and paraoxonases from human and rabbit, forming a unique superfamily consisting of C-O cleaving enzymes and P-O cleaving enzymes. Lactonohydrolase was expressed under the control of the lac promoter in Escherichia coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two novel type I ribosome-inactivating proteins (RIPs) were found in the storage roots of Mirabilis expansa, an underutilized Andean root crop. The two RIPs, named ME1 and ME2, were purified to homogeneity by ammonium sulfate precipitation, cation-exchange perfusion chromatography, and C4 reverse-phase chromatography. The two proteins were found to be similar in size (27 and 27.5 kD) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their isoelectric points were determined to be greater than pH 10.0. Amino acid N-terminal sequencing revealed that both ME1 and ME2 had conserved residues characteristic of RIPs. Amino acid composition and western-blot analysis further suggested a structural similarity between ME1 and ME2. ME2 showed high similarity to the Mirabilis jalapa antiviral protein, a type I RIP. Depurination of yeast 26S rRNA by ME1 and ME2 demonstrated their ribosome-inactivating activity. Because these two proteins were isolated from roots, their antimicrobial activity was tested against root-rot microorganisms, among others. ME1 and ME2 were active against several fungi, including Pythium irregulare, Fusarium oxysporum solani, Alternaria solani, Trichoderma reesei, and Trichoderma harzianum, and an additive antifungal effect of ME1 and ME2 was observed. Antibacterial activity of both ME1 and ME2 was observed against Pseudomonas syringae, Agrobacterium tumefaciens, Agrobacterium radiobacter, and others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusarium moniliforme toxins (fumonisins) and Alternaria alternata lycopersici (AAL) toxins are members of a new class of sphinganine analog mycotoxins that occur widely in the food chain. These mycotoxins represent a serious threat to human and animal health, inducing both cell death and neoplastic events in mammals. The mechanisms by which this family of chemical congeners induce changes in cell homeostasis were investigated in African green monkey kidney cells (CV-1) by assessing the appearance of apoptosis, cell cycle regulation, and putative components of signal transduction pathways involved in apoptosis. Structurally, these mycotoxins resemble the sphingoid bases, sphingosine and sphinganine, that are reported to play critical roles in cell communication and signal transduction. The addition of fumonisin B1 or AAL toxin, TA, to CV-1 cells induced the stereotypical hallmarks of apoptosis, including the formation of DNA ladders, compaction of nuclear DNA, and the subsequent appearance of apoptotic bodies. Neither mycotoxin induced cell death, DNA ladders, or apoptotic bodies in CV-1 cells expressing simian virus 40 large T antigen (COS-7) at toxin concentrations that readily killed CV-1 cells. Fumonisin B1 induced cell cycle arrest in the G1 phase in CV-1 cells but not in COS-7 cells. AAL toxin TA did not arrest cell cycle progression in either cell line. The induction of apoptosis combined with the widespread presence of these compounds in food crops and animal feed identifies a previously unrecognized health risk to humans and livestock. These molecules also represent a new class of natural toxicants that can be used as model compounds to further characterize the molecular and biochemical pathways leading to apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface signaling plays a major role in fungal infection. Topographical features of the plant surface and chemicals on the surface can trigger germination of fungal spores and differentiation of the germ tubes into appressoria. Ethylene, the fruit-ripening hormone, triggers germination of conidia, branching of hyphae, and multiple appressoria formation in Colletotrichum, thus allowing fungi to time their infection to coincide with ripening of the host. Genes uniquely expressed during appressoria formation induced by topography and surface chemicals have been isolated. Disruption of some of them has been shown to decrease virulence on the hosts. Penetration of the cuticle by the fungus is assisted by fungal cutinase secreted at the penetration structure of the fungus. Disruption of cutinase gene in Fusarium solani pisi drastically decreased its virulence. Small amounts of cutinase carried by spores of virulent pathogens, upon contact with plant surface, release small amounts of cutin monomers that trigger cutinase gene expression. The promoter elements involved in this process in F. solani pisi were identified, and transcription factors that bind these elements were cloned. One of them, cutinase transcription factor 1, expressed in Escherichia coli, is phosphorylated. Several protein kinases from F. solani pisi were cloned. The kinase involved in phosphorylation of specific transcription factors and the precise role of phosphorylation in regulating cutinase gene transcription remain to be elucidated.