94 resultados para Functions of a complex variable
em National Center for Biotechnology Information - NCBI
Resumo:
The spindle pole body (SPB) in Saccharomyces cerevisiae functions as the microtubule-organizing center. Spc110p is an essential structural component of the SPB and spans between the central and inner plaques of this multilamellar organelle. The amino terminus of Spc110p faces the inner plaque, the substructure from which spindle microtubules radiate. We have undertaken a synthetic lethal screen to identify mutations that enhance the phenotype of the temperature-sensitive spc110–221 allele, which encodes mutations in the amino terminus. The screen identified mutations in SPC97 and SPC98, two genes encoding components of the Tub4p complex in yeast. The spc98–63 allele is synthetic lethal only with spc110 alleles that encode mutations in the N terminus of Spc110p. In contrast, the spc97 alleles are synthetic lethal with spc110 alleles that encode mutations in either the N terminus or the C terminus. Using the two-hybrid assay, we show that the interactions of Spc110p with Spc97p and Spc98p are not equivalent. The N terminus of Spc110p displays a robust interaction with Spc98p in two different two-hybrid assays, while the interaction between Spc97p and Spc110p is not detectable in one strain and gives a weak signal in the other. Extra copies of SPC98 enhance the interaction between Spc97p and Spc110p, while extra copies of SPC97 interfere with the interaction between Spc98p and Spc110p. By testing the interactions between mutant proteins, we show that the lethal phenotype in spc98–63 spc110–221 cells is caused by the failure of Spc98–63p to interact with Spc110–221p. In contrast, the lethal phenotype in spc97–62 spc110–221 cells can be attributed to a decreased interaction between Spc97–62p and Spc98p. Together, these studies provide evidence that Spc110p directly links the Tub4p complex to the SPB. Moreover, an interaction between Spc98p and the amino-terminal region of Spc110p is a critical component of the linkage, whereas the interaction between Spc97p and Spc110p is dependent on Spc98p.
Resumo:
Forced expression of the retinoblastoma (RB) gene product inhibits the proliferation of cells in culture. A major target of the RB protein is the S-phase-inducing transcription factor E2F1. RB binds directly to the activation domain of E2F1 and silences it, thereby preventing cells from entering S phase. To induce complete G1 arrest, RB requires the presence of the hbrm/BRG-1 proteins, which are components of the coactivator SWI/SNF complex. This cooperation is mediated through a physical interaction between RB and hbrm/BRG-1. We show here that in transfected cells RB can contact both E2F1 and hbrm at the same time, thereby targeting hbrm to E2F1. E2F1 and hbrm are indeed found within the same complex in vivo. Furthermore, RB and hbrm cooperate to repress E2F1 activity in transient transfection assays. The ability of hbrm to cooperate with RB to repress E2F1 is dependent upon several distinct domains of hbrm, including the RB binding domain and the NTP binding site. However, the bromodomain seems dispensable for this activity. Taken together, our results point out an unexpected role of corepressor for the hbrm protein. The ability of hbrm and RB to cooperate in repressing E2F1 activity could be an underlying mechanism for the observed cooperation between hbrm and RB to induce G1 arrest. Finally, we demonstrate that the domain of hbrm that binds RB has transcriptional activation potential which RB can repress. This suggest that RB not only targets hbrm but also regulates its activity.
Resumo:
The target of rapamycin protein (TOR) is a highly conserved ataxia telangiectasia-related protein kinase essential for cell growth. Emerging evidence indicates that TOR signaling is highly complex and is involved in a variety of cellular processes. To understand its general functions, we took a chemical genomics approach to explore the genetic interaction between TOR and other yeast genes on a genomic scale. In this study, the rapamycin sensitivity of individual deletion mutants generated by the Saccharomyces Genome Deletion Project was systematically measured. Our results provide a global view of the rapamycin-sensitive functions of TOR. In contrast to conventional genetic analysis, this approach offers a simple and thorough analysis of genetic interaction on a genomic scale and measures genetic interaction at different possible levels. It can be used to study the functions of other drug targets and to identify novel protein components of a conserved core biological process such as DNA damage checkpoint/repair that is interfered with by a cell-permeable chemical compound.
Resumo:
Ho endonuclease of Saccharomyces cerevisiae is a homing endonuclease that makes a site-specific double-strand break in the MAT gene in late G1. Here we show that Ho is rapidly degraded via the ubiquitin-26S proteasome system through two ubiquitin-conjugating enzymes UBC2Rad6 and UBC3Cdc34. UBC2Rad6 is complexed with the ring finger DNA-binding protein Rad18, and we find that Ho is stabilized in rad18 mutants. We show that the Ho degradation pathway involving UBC3Cdc34 goes through the Skp1/Cdc53/F-box (SCF) ubiquitin ligase complex and identify a F-box protein, Yml088w, that is required for Ho degradation. Components of a defined pathway of the DNA damage response, MEC1, RAD9, and CHK1, are also necessary for Ho degradation, whereas functions of the RAD24 epistasis group and the downstream effector RAD53 have no role in degradation of Ho. Our results indicate a link between the endonuclease function of Ho and its destruction.
Resumo:
Mitogenic and stres signals results in the activation of extracellular signal-regulated kinases (ERKs) and stress-activated protein kinase/c-Jun N-terminal kinases (SAPK/JNKs), respectively, which are two subgroups of the mitogen-activated protein kinases. A nuclear target of mitogen-activated protein (MAP) kinases is the ternary complex factor Elk-1, which underlies its involvement in the regulation of c-fos gene expression by mitogenic and stress signals. A second ternary complex factor, Sap1a, is coexpressed with Elk-1 in several cell types and shares attributes of Elk-1, the significance of which is not clear. Here we show that Sap1a is phosphorylated efficiently by ERKs but not by SAPK/JNKs. Serum response factor-dependent ternary complex formation by Sap1a is stimulated by ERK phosphorylation but not by SAPK/JNKs. Moreover, Sap1a-mediated transcription is activated by mitogenic signals but not by cell stress. These results suggest that Sap1a and Elk-1 have distinct physiological functions.
Resumo:
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is an important mechanism for the regulation of gene expression. The members of the SR protein family of pre-mRNA splicing factors have distinct functions in promoting alternative splice site usage. Here we show that SR proteins are required for the first step of spliceosome assembly, interaction of the U1 small nuclear ribonucleoprotein complex (U1 snRNP) with the 5' splice site of the pre-mRNA. Further, we find that individual SR proteins have distinct abilities to promote interaction of U1 snRNP with alternative 5' splice junctions. These results suggest that SR proteins direct 5' splice site selection by regulation of U1 snRNP assembly onto the pre-mRNA.
Resumo:
It is now accepted that hippocampal lesions impair episodic memory. However, the precise functional role of the hippocampus in episodic memory remains elusive. Recent functional imaging data implicate the hippocampus in processing novelty, a finding supported by human in vivo recordings and event-related potential studies. Here we measure hippocampal responses to novelty, using functional MRI (fMRI), during an item-learning paradigm generated from an artificial grammar system. During learning, two distinct types of novelty were periodically introduced: perceptual novelty, pertaining to the physical characteristics of stimuli (in this case visual characteristics), and exemplar novelty, reflecting semantic characteristics of stimuli (in this case grammatical status within a rule system). We demonstrate a left anterior hippocampal response to both types of novelty and adaptation of these responses with stimulus familiarity. By contrast to these novelty effects, we also show bilateral posterior hippocampal responses with increasing exemplar familiarity. These results suggest a functional dissociation within the hippocampus with respect to the relative familiarity of study items. Neural responses in anterior hippocampus index generic novelty, whereas posterior hippocampal responses index familiarity to stimuli that have behavioral relevance (i.e., only exemplar familiarity). These findings add to recent evidence for functional segregation within the human hippocampus during learning.
Resumo:
In the retina, the glutamate transporter GLAST is expressed in Müller cells, whereas the glutamate transporter GLT-1 is found only in cones and various types of bipolar cells. To investigate the functional role of this differential distribution of glutamate transporters, we have analyzed GLAST and GLT-1 mutant mice. In GLAST-deficient mice, the electroretinogram b-wave and oscillatory potentials are reduced and retinal damage after ischemia is exacerbated, whereas GLT-1-deficient mice show almost normal electroretinograms and mild increased retinal damage after ischemia. These results demonstrate that GLAST is required for normal signal transmission between photoreceptors and bipolar cells and that both GLAST and GLT-1 play a neuroprotective role during ischemia in the retina.
Resumo:
Both reversible and irreversible inhibition of mitochondrial respiration have been reported following the generation of nitric oxide (NO) by cells. Using J774 cells, we have studied the effect of long-term exposure to NO on different enzymes of the respiratory chain. Our results show that, although NO inhibits complex IV in a way that is always reversible, prolonged exposure to NO results in a gradual and persistent inhibition of complex I that is concomitant with a reduction in the intracellular concentration of reduced glutathione. This inhibition appears to result from S-nitrosylation of critical thiols in the enzyme complex because it can be immediately reversed by exposing the cells to high intensity light or by replenishment of intracellular reduced glutathione. Furthermore, decreasing the concentration of reduced glutathione accelerates the process of persistent inhibition. Our results suggest that, although NO may regulate cell respiration physiologically by its action on complex IV, long-term exposure to NO leads to persistent inhibition of complex I and potentially to cell pathology.
Resumo:
In the highly concentrated environment of the cell, polypeptide chains are prone to aggregation during synthesis (as nascent chains await the emergence of the remainder of their folding domain), translocation, assembly, and exposure to stresses that cause previously folded proteins to unfold. A large and diverse group of proteins, known as chaperones, transiently associate with such folding intermediates to prevent aggregation, but in many cases the specific functions of individual chaperones are still not clear. In vivo, Hsp90 (heat shock protein 90) plays a role in the maturation of components of signal transduction pathways but also exhibits chaperone activity with diverse proteins in vitro, suggesting a more general function. We used a unique temperature-sensitive mutant of Hsp90 in Saccharomyces cerevisiae, which rapidly and completely loses activity on shift to high temperatures, to examine the breadth of Hsp90 functions in vivo. The data suggest that Hsp90 is not required for the de novo folding of most proteins, but it is required for a specific subset of proteins that have greater difficulty reaching their native conformations. Under conditions of stress, Hsp90 does not generally protect proteins from thermal inactivation but does enhance the rate at which a heat-damaged protein is reactivated. Thus, although Hsp90 is one of the most abundant chaperones in the cell, its in vivo functions are highly restricted.
Resumo:
Methyllycaconitine (MLA), α-conotoxin ImI, and α-bungarotoxin inhibited the release of catecholamines triggered by brief pulses of acetylcholine (ACh) (100 μM, 5 s) applied to fast-superfused bovine adrenal chromaffin cells, with IC50s of 100 nM for MLA and 300 nM for α-conotoxin ImI and α-bungarotoxin. MLA (100 nM), α-conotoxin ImI (1 μM), and α-bungarotoxin (1 μM) halved the entry of 45Ca2+ stimulated by 5-s pulses of 300 μM ACh applied to incubated cells. These supramaximal concentrations of α7 nicotinic receptor blockers depressed by 30% (MLA), 25% (α-bungarotoxin), and 50% (α-conotoxin ImI) the inward current generated by 1-s pulses of 100 μM ACh, applied to voltage-clamped chromaffin cells. In Xenopus oocytes expressing rat brain α7 neuronal nicotinic receptor for acetylcholine nAChR, the current generated by 1-s pulses of ACh was blocked by MLA, α-conotoxin ImI, and α-bungarotoxin with IC50s of 0.1 nM, 100 nM, and 1.6 nM, respectively; the current through α3β4 nAChR was unaffected by α-conotoxin ImI and α-bungarotoxin, and weakly blocked by MLA (IC50 = 1 μM). The functions of controlling the electrical activity, the entry of Ca2+, and the ensuing exocytotic response of chromaffin cells were until now exclusively attributed to α3β4 nAChR; the present results constitute the first evidence to support a prominent role of α7 nAChR in controlling such functions, specially under the more physiological conditions used here to stimulate chromaffin cells with brief pulses of ACh.
Resumo:
In Drosophila, the chromosomal region 75C1–2 contains at least three genes, reaper (rpr), head involution defective (hid), and grim, that have important functions in the activation of programmed cell death. To better understand how cells are killed by these genes, we have utilized a well defined set of embryonic central nervous system midline cells that normally exhibit a specific pattern of glial cell death. In this study we show that both rpr and hid are expressed in dying midline cells and that the normal pattern of midline cell death requires the function of multiple genes in the 75C1–2 interval. We also utilized the P[UAS]/P[Gal4] system to target expression of rpr and hid to midline cells. Targeted expression of rpr or hid alone was not sufficient to induce ectopic midline cell death. However, expression of both rpr and hid together rapidly induced ectopic midline cell death that resulted in axon scaffold defects characteristic of mutants with abnormal midline cell development. Midline-targeted expression of the baculovirus p35 protein, a caspase inhibitor, blocked both normal and ectopic rpr- and hid-induced cell death. Taken together, our results suggest that rpr and hid are expressed together and cooperate to induce programmed cell death during development of the central nervous system midline.
Resumo:
Sequences of the variable heavy (VH) and κ (Vκ) domains of Ig structures were divided into 21 fragments that correspond to strands, loops, or parts of these structural units of the variable domains. Amino acid sequences of fragments (termed “words”) were collected from the 1,172 human heavy and 668 human κ chains available in the Kabat database. Statistical analysis of words of 17 fragments was performed (fragments that comprise the complementary determining regions′ fragments will not be discussed in this paper). The number of different words (those with different residues in at least one position) ranged, for various fragments, from 11 to 75 in the κ chains, and from 23 to 189 in the heavy chains. The main result of this study is that very few keywords, or main patterns of words, were necessary to describe over 90% of the sequences (no more than two keywords per fragment in the κ and no more than five per fragment in the heavy chains). No identical keywords were found for different fragments of the variable domains. Keywords of aligned fragments of the VH and Vκ domains were different in all but two instances. Thus, knowing the keywords, one can determine whether any given small part of a sequence belongs to a heavy or κ chain and predict its precise localization in the sequence. In addition, by using all of the keywords obtained through analysis of the Kabat database, it was possible to describe completely the sequences of the human VH and Vκ germ-line segments.
Resumo:
Several changes in cell morphology take place during the capping of surface receptors in Entamoeba histolytica. The amoebae develop the uroid, an appendage formed by membrane invaginations, which accumulates ligand–receptor complexes resulting from the capping process. Membrane shedding is particularly active in the uroid region and leads to the elimination of accumulated ligands. This appendage has been postulated to participate in parasitic defense mechanisms against the host immune response, because it eliminates complement and specific antibodies bound to the amoeba surface. The involvement of myosin II in the capping process of surface receptors has been suggested by experiments showing that drugs that affect myosin II heavy-chain phosphorylation prevent this activity. To understand the role of this mechanoenzyme in surface receptor capping, a myosin II dominant negative strain was constructed. This mutant is the first genetically engineered cytoskeleton-deficient strain of E. histolytica. It was obtained by overexpressing the light meromyosin domain, which is essential for myosin II filament formation. E. histolytica overexpressing light meromyosin domain displayed a myosin II null phenotype characterized by abnormal movement, failure to form the uroid, and failure to undergo the capping process after treatment with concanavalin A. In addition, the amoebic cytotoxic capacities of the transfectants on human colon cells was dramatically reduced, indicating a role for cytoskeleton in parasite pathogenicity.
Resumo:
To explore the role of nonmuscle myosin II isoforms during mouse gametogenesis, fertilization, and early development, localization and microinjection studies were performed using monospecific antibodies to myosin IIA and IIB isotypes. Each myosin II antibody recognizes a 205-kDa protein in oocytes, but not mature sperm. Myosin IIA and IIB demonstrate differential expression during meiotic maturation and following fertilization: only the IIA isoform detects metaphase spindles or accumulates in the mitotic cleavage furrow. In the unfertilized oocyte, both myosin isoforms are polarized in the cortex directly overlying the metaphase-arrested second meiotic spindle. Cortical polarization is altered after spindle disassembly with Colcemid: the scattered meiotic chromosomes initiate myosin IIA and microfilament assemble in the vicinity of each chromosome mass. During sperm incorporation, both myosin II isotypes concentrate in the second polar body cleavage furrow and the sperm incorporation cone. In functional experiments, the microinjection of myosin IIA antibody disrupts meiotic maturation to metaphase II arrest, probably through depletion of spindle-associated myosin IIA protein and antibody binding to chromosome surfaces. Conversely, the microinjection of myosin IIB antibody blocks microfilament-directed chromosome scattering in Colcemid-treated mature oocytes, suggesting a role in mediating chromosome–cortical actomyosin interactions. Neither myosin II antibody, alone or coinjected, blocks second polar body formation, in vitro fertilization, or cytokinesis. Finally, microinjection of a nonphosphorylatable 20-kDa regulatory myosin light chain specifically blocks sperm incorporation cone disassembly and impedes cell cycle progression, suggesting that interference with myosin II phosphorylation influences fertilization. Thus, conventional myosins break cortical symmetry in oocytes by participating in eccentric meiotic spindle positioning, sperm incorporation cone dynamics, and cytokinesis. Although murine sperm do not express myosin II, different myosin II isotypes may have distinct roles during early embryonic development.