5 resultados para Function mapping

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The semaphorins comprise a large family of membrane-bound and secreted proteins, some of which have been shown to function in axon guidance. We have cloned a transmembrane semaphorin, Sema W, that belongs to the class IV subgroup of the semaphorin family. The mouse and rat forms of Sema W show 97% amino acid sequence identity with each other, and each shows about 91% identity with the human form. The gene for Sema W is divided into 15 exons, up to 4 of which are absent in the human cDNAs that we sequenced. Unlike many other semaphorins, Sema W is expressed at low levels in the developing embryo but was found to be expressed at high levels in the adult central nervous system and lung. Functional studies with purified membrane fractions from COS7 cells transfected with a Sema W expression plasmid showed that Sema W has growth-cone collapse activity against retinal ganglion-cell axons, indicating that vertebrate transmembrane semaphorins, like secreted semaphorins, can collapse growth cones. Genetic mapping of human SEMAW with human/hamster radiation hybrids localized the gene to chromosome 2p13. Genetic mapping of mouse Semaw with mouse/hamster radiation hybrids localized the gene to chromosome 6, and physical mapping placed the gene on bacteria artificial chromosomes carrying microsatellite markers D6Mit70 and D6Mit189. This localization places Semaw within the locus for motor neuron degeneration 2, making it an attractive candidate gene for this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy of DNA deformation plays a crucial and active role in its packaging and its function in the cell. Considerable effort has gone into developing methodologies capable of evaluating the local sequence-directed curvature and flexibility of a DNA chain. These studies thus far have focused on DNA constructs expressly tailored either with anomalous flexibility or curvature tracts. Here we demonstrate that these two structural properties can be mapped also along the chain of a “natural” DNA with any sequence on the basis of its scanning force microscope (SFM) images. To know the orientation of the sequence of the investigated DNA molecules in their SFM images, we prepared a palindromic dimer of the long DNA molecule under study. The palindromic symmetry also acted as an internal gauge of the statistical significance of the analysis carried out on the SFM images of the dimer molecules. It was found that although the curvature modulus is not efficient in separating static and dynamic contributions to the curvature of the population of molecules, the curvature taken with its direction (its sign in two dimensions) permits the direct separation of the intrinsic curvature from the flexibility contributions. The sequence-dependent flexibility seems to vary monotonically with the chain's intrinsic curvature; the chain rigidity was found to modulate as its local thermodynamic stability and does not correlate with the dinucleotide chain rigidities evaluation made from x-ray data by other authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis MADS domain proteins AP1, AP3, PI, and AG specify floral organ identity. All of these proteins contain a MADS domain required for DNA binding and dimerization; a region termed L (linker between MADS domain and K domain), which plays an important role in dimerization specificity; the K domain, named for its similarity to the coiled-coil domain of keratin; and a C-terminal region of unknown function. To determine which regions of these proteins are responsible for their abilities to specify different organs, we have made a number of chimeric MADS box genes. The in vivo function of these chimeric genes was investigated by ectopic expression in transgenic Arabidopsis plants. The four proteins fall into two classes on the basis of regions responsible for their functional specificities. The L region and K domain define the functional specificities of AP3 and PI, while the MADS domain and L region define the functional specificities of AP1 and AG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of proteins involved in cell cycle progression, DNA recombination, and the detection of DNA damage has been recently identified. One of the members of this family, human ATM, is defective in the cells of patients with ataxia telangiectasia and is involved in detection and response of cells to damaged DNA. Other members include Mei-41 (Drosophila melanogaster), Mec1p (Saccharomyces cerevisiae), and Rad3 (Schizosaccharomyces pombe), which are required for the S and G2/M checkpoints, as well as FRAP (Homo sapiens) and Torl/2p (S. cerevisiae), which are involved in a rapamycin-sensitive pathway leading to G1 cell cycle progression. We report here the cloning of a human cDNA encoding a protein with significant homology to members of this family. Three overlapping clones isolated from a Jurkat T-cell cDNA library revealed a 7.9-kb open reading frame encoding a protein that we have named FRP1 (FRAP-related protein) with 2644 amino acids and a predicted molecular mass of 301 kDa. Using fluorescence in situ hybridization and a full-length cDNA FRP1 clone, the FRP1 gene has been mapped to the chromosomal locus 3q22-q24. FRP1 is most closely related to three of the PIK-related kinase family members involved in checkpoint function--Mei-41, Mec1p, and Rad3--and as such may be the functional human counterpart of these proteins.