16 resultados para Free surface

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multidimensional free energy surface for a small fast folding helical protein is explored based on first-principle calculations. The model represents the 46-residue segment from fragment B of staphylococcal protein A. The relationship between collapse and tertiary structure formation, and the order of collapse and secondary structure formation, are investigated. We find that the initial collapse process gives rise to a transition state with about 30% of the native tertiary structure and 50–70% of the native helix content. We also observe two distinct distributions of native helix in this collapsed state (Rg ≈ 12 Å), one with about 20% of the native helical hydrogen bonds, the other with near 70%. The former corresponds to a local minimum. The barrier from this metastable state to the native state is about 2 kBT. In the latter case, folding is essentially a downhill process involving topological assembly. In addition, the order of formation of secondary structure among the three helices is examined. We observe cooperative formation of the secondary structure in helix I and helix II. Secondary structure in helix III starts to form following the formation of certain secondary structure in both helix I and helix II. Comparisons of our results with those from theory and experiment are made.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Testosterone acts on cells through intracellular transcription-regulating androgen receptors (ARs). Here, we show that mouse IC-21 macrophages lack the classical AR yet exhibit specific nongenomic responses to testosterone. These manifest themselves as testosterone-induced rapid increase in intracellular free [Ca2+], which is due to release of Ca2+ from intracellular Ca2+ stores. This Ca2+ mobilization is also inducible by plasma membrane-impermeable testosterone-BSA. It is not affected by the AR blockers cyproterone and flutamide, whereas it is completely inhibited by the phospholipase C inhibitor U-73122 and pertussis toxin. Binding sites for testosterone are detectable on the surface of intact IC-21 cells, which become selectively internalized independent on caveolae and clathrin-coated vesicles upon agonist stimulation. Internalization is dependent on temperature, ATP, cytoskeletal elements, phospholipase C, and G-proteins. Collectively, our data provide evidence for the existence of G-protein-coupled, agonist-sequestrable receptors for testosterone in plasma membranes, which initiate a transcription-independent signaling pathway of testosterone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double-stranded RNA deaminase I (ADAR1) contains the Z-DNA binding domain Zα. Here we report the solution structure of free Zα and map the interaction surface with Z-DNA, confirming roles previously assigned to residues by mutagenesis. Comparison with the crystal structure of the (Zα)2/Z-DNA complex shows that most Z-DNA contacting residues in free Zα are prepositioned to bind Z-DNA, thus minimizing the entropic cost of binding. Comparison with homologous (α+β)helix–turn–helix/B-DNA complexes suggests that binding of Zα to B-DNA is disfavored by steric hindrance, but does not eliminate the possibility that related domains may bind to both B- and Z-DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new mathematical model is proposed for the spreading of a liquid film on a solid surface. The model is based on the standard lubrication approximation for gently sloping films (with the no-slip condition for the fluid at the solid surface) in the major part of the film where it is not too thin. In the remaining and relatively small regions near the contact lines it is assumed that the so-called autonomy principle holds—i.e., given the material components, the external conditions, and the velocity of the contact lines along the surface, the behavior of the fluid is identical for all films. The resulting mathematical model is formulated as a free boundary problem for the classical fourth-order equation for the film thickness. A class of self-similar solutions to this free boundary problem is considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anti-common gamma chain (γc) mAb CP.B8 is shown to inhibit interleukin 4 (IL-4)-dependent proliferation of phytohemagglutinin (PHA) activated T cells noncompetitively with respect to cytokine by blocking the IL-4-induced heterodimerization of IL-4Rα and γc receptor chains. Affinities for the binding of IL-4 to Cos-7 cells transfected with huIL-4Rα, and to PHA blasts expressing both IL-4Rα and γc, were used to estimate the affinity of the key interaction between γc and the binary IL-4Rα⋅IL-4 complex on the cell surface. This affinity was defined in terms of the dimensionless ratio [IL-4Rα⋅IL-4⋅γc]/[IL-4Rα⋅IL-4], which we designate KR. The results show that on PHA blasts this interaction is relatively weak; KR ≈ 9, implying that ≈10% of the limiting IL-4Rα chain remains free of γc even at saturating concentrations of IL-4. This quantitative treatment establishes KR as a key measure of the coupling between ligand binding and receptor activation, providing a basis for functional distinctions between different receptors that are activated by ligand-induced receptor dimerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TGN38 is one of the few known resident integral membrane proteins of the trans-Golgi network (TGN). Since it cycles constitutively between the TGN and the plasma membrane, TGN38 is ideally suited as a model protein for the identification of post-Golgi trafficking motifs. Several studies, employing chimeric constructs to detect such motifs within the cytosolic domain of TGN38, have identified the sequence 333YQRL336 as an autonomous signal capable of localizing reporter proteins to the TGN. In addition, one group has found that an upstream serine residue, S331, may also play a role in TGN38 localization. However, the nature and degree of participation of S331 in the localization of TGN38 remain uncertain, and the effect has been studied in chimeric constructs only. Here we investigate the role of S331 in the context of full-length TGN38. Mutations that abolish the hydroxyl moiety at position 331 (A, D, and E) lead to missorting of endocytosed TGN38 to the lysosome. Conversely, mutation of S331 to T has little effect on the endocytic trafficking of TGN38. Together, these findings indicate that the S331 hydroxyl group has a direct or indirect effect on the ability of the cytosolic tail of TGN38 to interact with trafficking and/or sorting machinery at the level of the early endosome. In addition, mutation of S331 to either A or D results in increased levels of TGN38 at the cell surface. The results confirm that S331 plays a critical role in the intracellular trafficking of TGN38 and further reveal that TGN38 undergoes a signal-mediated trafficking step at the level of the endosome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many biological processes require proteins to undergo conformational changes at the surface of membranes. For example, some precursor proteins unfold at the surface of mitochondria and chloroplasts before translocation into the organelles, and toxins such as colicin A unfold to the molten globule state at bacterial surfaces before inserting into the cell membrane. It is commonly thought that the membrane surfaces and the associated protein machinery destabilize the substrate proteins and that this effect is required for membrane insertion or translocation. One of the best characterized translocation processes is protein import into mitochondria. By measuring the contributions of individual interactions within a model protein to its stability at the mitochondrial surface and in free solution, we show here that the mitochondrial surface neither induces the molten globule state in this protein nor preferentially destabilizes any type of interaction (e.g., hydrogen bonds, nonpolar, etc.) within the protein. Because it is not possible to measure absolute protein stability at the surface of mitochondria, we determined the stability of a tightly associated protein–protein complex at the mitochondrial import site as a model of the stability of a protein. We found the binding constants of the protein–protein complex at the mitochondrial surface and in free solution to be identical. Our results demonstrate that the mitochondrial surface does not destabilize importing precursor proteins in its vicinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have obtained an experimental estimate of the free energy change associated with variations at the interface between protein subunits, a subject that has raised considerable interest since the concept of accessible surface area was introduced by Lee and Richards [Lee, B. & Richards, F. M. (1971) J. Mol. Biol. 55, 379–400]. We determined by analytical ultracentrifugation the dimer–tetramer equilibrium constant of five single and three double mutants of human Hb. One mutation is at the stationary α1β1 interface, and all of the others are at the sliding α1β2 interface where cleavage of the tetramer into dimers and ligand-linked allosteric changes are known to occur. A surprisingly good linear correlation between the change in the free energy of association of the mutants and the change in buried hydrophobic surface area was obtained, after corrections for the energetic cost of losing steric complementarity at the αβ dimer interface. The slope yields an interface stabilization free energy of −15 ± 1.2 cal/mol upon burial of 1 Å2 of hydrophobic surface, in very good agreement with the theoretical estimate given by Eisenberg and McLachlan [Eisenberg, D. & McLachlan, A. D. (1986) Nature (London) 319, 199–203].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced Cl− efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl− efflux via two mechanisms. The first is a direct effect of pHc on Cl− efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl− efflux. Cl− efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl− efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl− efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nematodes can alter their surface coat protein compositions at the molts between developmental stages or in response to environmental changes; such surface alterations may enable parasitic nematodes to evade host immune defenses during the course of infection. Surface antigen switching mechanisms are presently unknown. In a genetic study of surface antigen switching, we have used a monoclonal antibody, M37, that recognizes a surface antigen on the first larval stage of the free-living nematode Caenorhabditis elegans. We demonstrate that wild-type C. elegans can be induced to display the M37 antigen on a later larval stage by altering the growth conditions. Mutations that result in nonconditional display of this antigen on all four larval stages fall into two classes. One class defines the new gene srf-6 II. The other mutations are in previously identified dauer-constitutive genes involved in transducing environmental signals that modulate formation of the dauer larva, a developmentally arrested dispersal stage. Although surface antigen switching is affected by some of the genes that control dauer formation, these two process can be blocked separately by specific mutations or induced separately by environmental factors. Based on these results, the mechanisms of nematode surface antigen switching can now be investigated directly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin receptor and downstream signaling proteins, and this activation persisted for longer periods than that obtained with free insulin, probably explaining the greater mitogenic effect of the immobilized insulin. Finally the immobilized-insulin film was usable repeatedly without marked loss of activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult Schistosoma mansoni blood flukes reside in the mesenteric veins of their vertebrate hosts, where they absorb immense quantities of glucose through their tegument by facilitated diffusion. Previously, we obtained S. mansoni cDNAs encoding facilitated-diffusion schistosome glucose transporter proteins 1 and 4 (SGTP1 and SGTP4) and localized SGTP1 to the basal membranes of the tegument and the underlying muscle. In this study, we characterize the expression and localization of SGTP4 during the schistosome life cycle. Antibodies specific to SGTP4 appear to stain only the double-bilayer, apical membranes of the adult parasite tegument, revealing an asymmetric distribution relative to the basal transporter SGTP1. On living worms, SGTP4 is available to surface biotinylation, suggesting that it is exposed at the hose-parasite interface. SGTP4 is detected shortly after the transformation of free-living, infectious cercariae into schistosomula and coincides with the appearance of the double membrane. Within 15 min after transformation, anti-SGTP4 staining produces a bright, patchy distribution at the surface of schistosomula, which becomes contiguous over the entire surface of the schistosomula by 24 hr after transformation. SGTP4 is not detected in earlier developmental stages (eggs, sporocysts, and cercariae) that do not possess the specialized double membrane. Thus, SGTP4 appears to be expressed only in the mammalian stages of the parasite's life cycle and specifically localized within the host-interactive, apical membranes of the tegument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glycosyl-phosphatidylinositol (GPI) anchor of the Trypanosoma brucei variant surface glycoprotein (VSG) is unique in having exclusively myristate as its fatty acid component. We previously demonstrated that the myristate specificity is the result of two independent pathways. First, the newly synthesized free GPI, which is not myristoylated, undergoes fatty acid remodeling to replace both its fatty acids with myristate. Second, the myristoylated precursor, glycolipid A, undergoes a myristate exchange reaction, detected by the replacement of unlabeled myristate by [3H]myristate. Remodeling and exchange have different enzymatic properties and apparently occur in different subcellular compartments. We now demonstrate that the GPI anchor linked to VSG is the major substrate for myristate exchange. VSG can be efficiently labeled with [3H]myristate by exchange in the presence of cycloheximide, an inhibitor that prevents new VSG synthesis and thus anchor addition to protein. Not only is newly synthesized VSG subject to exchange, but mature VSG, possibly recycling from the cell surface, also undergoes myristate exchange.