2 resultados para Fractals
em National Center for Biotechnology Information - NCBI
Resumo:
For taxonomic levels higher than species, the abundance distributions of the number of subtaxa per taxon tend to approximate power laws but often show strong deviations from such laws. Previously, these deviations were attributed to finite-time effects in a continuous-time branching process at the generic level. Instead, we describe herein a simple discrete branching process that generates the observed distributions and find that the distribution's deviation from power law form is not caused by disequilibration, but rather that it is time independent and determined by the evolutionary properties of the taxa of interest. Our model predicts—with no free parameters—the rank-frequency distribution of the number of families in fossil marine animal orders obtained from the fossil record. We find that near power law distributions are statistically almost inevitable for taxa higher than species. The branching model also sheds light on species-abundance patterns, as well as on links between evolutionary processes, self-organized criticality, and fractals.
Resumo:
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.