8 resultados para Fowler
em National Center for Biotechnology Information - NCBI
Resumo:
Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force. We compare this with chemical unfolding rates for untethered modules extrapolated to 0 M denaturant. The unfolding rates obtained by the two methods are the same. Furthermore, the transition state for unfolding appears at the same position on the folding pathway when assessed by either method. These results indicate that mechanical unfolding of a single protein by AFM does indeed reflect the same event that is observed in traditional unfolding experiments. The way is now open for the extensive use of AFM to measure folding reactions at the single-molecule level. Single-molecule AFM recordings have the added advantage that they define the reaction coordinate and expose rare unfolding events that cannot be observed in the absence of chemical denaturants.
Resumo:
The mushroom-producing fungus Schizophyllum commune has thousands of mating types defined, in part, by numerous lipopeptide pheromones and their G protein-linked receptors. Compatible combinations of pheromones and receptors encoded by different mating types regulate a pathway of sexual development leading to mushroom formation and meiosis. A complex set of pheromone–receptor interactions maximizes the likelihood of outbreeding; for example, a single pheromone can activate more than one receptor and a single receptor can be activated by more than one pheromone. The current study demonstrates that the sex pheromones and receptors of Schizophyllum, when expressed in Saccharomyces cerevisiae, can substitute for endogenous pheromone and receptor and induce the yeast pheromone response pathway through the yeast G protein. Secretion of active Schizophyllum pheromone requires some, but not all, of the biosynthetic machinery used by the yeast lipopeptide pheromone a-factor. The specificity of interaction among pheromone–receptor pairs in Schizophyllum was reproduced in yeast, thus providing a powerful system for exploring molecular aspects of pheromone–receptor interactions for a class of seven-transmembrane-domain receptors common to a wide range of organisms.
Resumo:
The LEAFY/FLORICAULA genes from Arabidopsis and Antirrhinum are necessary for normal flower development and play a key role in diverse angiosperm species. A homologue of these flower meristem-identity genes, NEEDLY (NLY), has been identified in Pinus radiata. Although the NLY protein shares extensive sequence similarity with its angiosperm counterparts, it is lacking the proline-rich and acidic motifs thought to function as transcriptional activation domains. NLY already is expressed during vegetative development at least 5 years before the transition to the reproductive phase. Expression of NLY in transgenic Arabidopsis promotes floral fate, demonstrating that, despite its sequence divergence, NLY encodes a functional ortholog of the FLORICAULA/LEAFY genes of angiosperms. Expression of the LFY∷NLY transgene can largely complement the defects in flower development caused by a severe lfy allele.
Resumo:
Objectives: To estimate the efficacy of dietary advice to lower blood total cholesterol concentration in free-living subjects and to investigate the efficacy of different dietary recommendations.
Resumo:
The semidominant mutation Liguleless3-O (Lg3-O) causes a blade-to-sheath transformation at the midrib region of the maize (Zea mays L.) leaf. We isolated a full-length lg3 cDNA containing a knotted1-like family homeobox. Six Lg3-O partial revertant alleles caused by insertion of a Mutator (Mu) transposon and two deletion derivatives were isolated and used to verify that our knotted1-like cDNA corresponds to the LG3 message. In wild-type plants the LG3 mRNA is expressed in apical regions but is not expressed in leaves. In mutant plants harboring any of three dominant lg3 alleles (Lg3-O, -Mlg, and -347), LG3 mRNA is expressed in leaf sheath tissue, indicating that the Lg3 phenotype is due to ectopic expression of the gene. The Lg3-O revertant alleles represent two classes of Lg3 phenotypes that correlate well with the level of ectopic Lg3 expression. High levels of ectopic LG3 mRNA expression results in a severe Lg3 phenotype, whereas weak ectopic Lg3 expression results in a mild Lg3 phenotype. We propose that ectopic Lg3 expression early in leaf development causes the blade-to-sheath transformation, but the level of expression determines the extent of the transformation.
Resumo:
The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce long-lasting inhibition of the DAT as a mean of preventing the "high" and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight non-drug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [11C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies > 80% may be required.
Resumo:
We report studies of energy transfer from the 800-nm absorbing pigment (B800) to the 850-nm absorbing pigment (B850) of the LH2 peripheral antenna complex and from LH2 to the core antenna complex (LH1) in Rhodobacter (Rb.) sphaeroides. The B800 to B850 process was studied in membranes from a LH2-reaction center (no LH1) mutant of Rb. sphaeroides and the LH2 to LH1 transfer was studied in both the wild-type species and in LH2 mutants with blue-shifted B850. The measurements were performed by using approximately 100-fs pulses to probe the formation of acceptor excitations in a two-color pump-probe measurement. Our experiments reveal a B800 to B850 transfer time of approximately 0.7 ps at 296 K and energy transfer from LH2 to LH1 is characterized by a time constant of approximately 3 ps at 296 K and approximately 5 ps at 77 K. In the blue-shifted B850 mutants, the transfer time from B850 to LH1 becomes gradually longer with increasing blue-shift of the B850 band as a result of the decreasing spectral overlap between the antennae. The results have been used to produce a model for the association between the ring-like structures that are characteristic of both the LH2 and LH1 antennae.
Resumo:
Irregularities in observed population densities have traditionally been attributed to discretization of the underlying dynamics. We propose an alternative explanation by demonstrating the evolution of spatiotemporal chaos in reaction-diffusion models for predator-prey interactions. The chaos is generated naturally in the wake of invasive waves of predators. We discuss in detail the mechanism by which the chaos is generated. By considering a mathematical caricature of the predator-prey models, we go on to explain the dynamical origin of the irregular behavior and to justify our assertion that the behavior we present is a genuine example of spatiotemporal chaos.