11 resultados para Foreign correspondents

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain bacterial protein toxins are able to insert themselves into, and at least partially across, lipid bilayer membranes in the absence of any auxiliary proteins, by using unknown mechanisms to overcome the high energy barrier presented by the hydrophobic bilayer core. We have previously shown that one such toxin, colicin Ia, translocates a large, hydrophilic part of itself completely across a lipid bilayer in conjunction with the formation of an ion-conducting channel. To address the question of whether the colicin can translocate any arbitrary amino acid sequence, we have altered the translocated segment by inserting, singly, two different foreign epitopes. Colicins containing either epitope retain significant bactericidal activity and form channels of normal conductance in planar bilayers. Furthermore, antibodies added on the side of the bilayer opposite that to which the colicin was added interact specifically with the corresponding epitopes, producing an inhibition of channel closing. Thus, the inserted epitopes are translocated along with the rest of the segment, suggesting that a surprisingly small part of colicin Ia, located elsewhere in the molecule, acts as a nonspecific protein translocator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleocapsid of hepatitis B virus (HBV), or HBcAg, is a highly symmetric structure formed by multiple dimers of a single core protein that contains potent T helper epitopes in its 183-aa sequence. Both factors make HBcAg an unusually strong immunogen and an attractive candidate as a carrier for foreign epitopes. The immunodominant c/e1 epitope on the capsid has been suggested as a superior location to convey high immunogenicity to a heterologous sequence. Because of its central position, however, any c/e1 insert disrupts the core protein’s primary sequence; hence, only peptides, or rather small protein fragments seemed to be compatible with particle formation. According to recent structural data, the epitope is located at the tips of prominent surface spikes formed by the very stable dimer interfaces. We therefore reasoned that much larger inserts might be tolerated, provided the individual parts of a corresponding fusion protein could fold independently. Using the green fluorescent protein (GFP) as a model insert, we show that the chimeric protein efficiently forms fluorescent particles; hence, all of its structurally important parts must be properly folded. We also demonstrate that the GFP domains are surface-exposed and that the chimeric particles elicit a potent humoral response against native GFP. Hence, proteins of at least up to 238 aa can be natively displayed on the surface of HBV core particles. Such chimeras may not only be useful as vaccines but may also open the way for high resolution structural analyses of nonassembling proteins by electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Academy has elected 72 new members and 15 foreign associates from 10 countries in recognition of their distinguished and continuing achievements in original research. The election was held during the business session of the 138th annual meeting of the Academy. Election to membership in the Academy is considered one of the highest honors that can be accorded a U.S. scientist or engineer. Foreign associates are non-voting members of the Academy, with citizenship outside of the United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Academy has elected 60 new members and 15 foreign associates from 9 countries in recognition of their distinguished and continuing achievements in original research. The election was held during the business session of the 137th annual meeting of the Academy. Election to membership in the Academy is considered one of the highest honors that can be accorded a U.S. scientist or engineer. Foreign associates are non-voting members of the Academy, with citizenship outside of the United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study we demonstrated that vesicular stomatitis virus (VSV) can be used as a vector to express a soluble protein in mammalian cells. Here we have generated VSV recombinants that express four different membrane proteins: the cellular CD4 protein, a CD4-G hybrid protein containing the ectodomain of CD4 and the transmembrane and cytoplasmic tail of the VSV glycoprotein (G), the measles virus hemagglutinin, or the measles virus fusion protein. The proteins were expressed at levels ranging from 23-62% that of VSV G protein and all were transported to the cell surface. In addition we found that all four proteins were incorporated into the membrane envelope of VSV along with the VSV G protein. The levels of incorporation of these proteins varied from 6-31% of that observed for VSV G. These results suggest that many different membrane proteins may be co-incorporated quite efficiently with VSV G protein into budding VSV virus particles and that specific signals are not required for this co-incorporation process. In fact, the CD4-G protein was incorporated with the same efficiency as wild type CD4. Electron microscopy of virions containing CD4 revealed that the CD4 molecules were dispersed throughout the virion envelope among the trimeric viral spike glycoproteins. The recombinant VSV-CD4 virus particles were about 18% longer than wild type virions, reflecting the additional length of the helical nucleocapsid containing the extra gene. Recombinant VSVs carrying foreign antigens on the surface of the virus particle may be useful for viral targeting, membrane protein purification, and for generation of immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reverse genetics approach was applied to generate a chimeric nonsegmented negative strand RNA virus, rabies virus (RV) of the Rhabdoviridae family, that expresses a foreign protein. DNA constructs containing the entire open reading frame of the bacterial chloramphenicol acetyltransferase (CAT) gene and an upstream RV cistron border sequence were inserted either into the nontranslated pseudogene region of a full-length cDNA copy of the RV genome or exchanged with the pseudogene region. After intracellular T7 RNA polymerase-driven expression of full-length antigenome RNA transcripts and RV nucleoprotein, phosphoprotein and polymerase from transfected plasmids, RVs transcribing novel monocistronic mRNAs and expressing CAT at high levels, were recovered. The chimeric viruses possessed the growth characteristics of standard RV and were genetically stable upon serial cell culture passages. CAT activity was still observed in cell cultures infected with viruses passaged for more than 25 times. Based on the unprecedented stability of the chimeric RNA genomes, which is most likely due to the structure of the rhabdoviral ribonucleoprotein complex, we predict the successful future use of recombinant rhabdovirus vectors for displaying foreign antigens or delivering therapeutic genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the mechanisms involved in human gammadelta T-cell tolerance to self or to foreign antigens. Patients with congenital toxoplasmosis offer a unique opportunity to examine Vdelta2+ gammadelta T-cell tolerance. Analysis of gammadelta T cells in patients with congenital toxoplasmosis revealed evidence for anergy of these cells with or without clonal Vdelta2+ gammadelta T-cell expansion in the acute phase of the Toxoplasma infection. T cells in general were unresponsive and did not proliferate upon exposure to mitogens or to Toxoplasma lysate antigens or in response to live Toxoplasma-infected cells when the congenitally infected infants were 1 month of age, and they exhibited selective anergy to Toxoplasma lysate antigens and live Toxoplasma-infected cells when the infants were aged 5 months. During the chronic phase of congenital toxoplasmosis in the patients who were more than I year of age, the repertoires of the gammadelta T-cell receptors were found to be within normal ranges. In addition, in the chronic phase, the gammadelta T cells proliferated and secreted gamma-interferon in response to exposure to live Toxoplasmia-infected cells. By contrast, alphabeta T cells remained anergic. Vdelta2+ gammadelta T cells have been considered to undergo extrathymic maturation and thus to be subject to development of peripheral tolerance. Our findings indicate that Vdelta2+ gammadelta T-cell tolerance was lost in these infected infants earlier than alphabeta T-cell tolerance. These findings suggest that gammadelta T cells play a role in protection against Toxoplasma gondii in the chronic phase when congenitally infected children are more than 1 year of age, especially in those in whom alphabeta T cells continue to exhibit deficits in specific immune responses to Toxoplasma antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune system's ability to distinguish self and nonself is essential for both host defense against foreign agents and protection of self-antigens from autoimmune destruction. Such discrimination is complicated by extensive structural homology shared between foreign and self antigens. One hypothesis to explain the development of an autoimmune response is that some B cells activated by foreign antigen acquire, through somatic mutation, specificity for both the eliciting foreign antigen and self antigen. If such clones arise frequently, there must be a mechanism for their elimination. We have analyzed the extent of autoreactivity arising in a nonautoimmune host during the response to a foreign antigen. To overcome the process of apoptosis in primary B cells that might routinely eliminate autoreactive clones, we generated B-cell hybridomas from spleen cells of immunized mice by using a fusion partner constitutively expressing bcl-2. Multiple lines were obtained that recognize simultaneously the hapten phosphorylcholine and the self antigen double-stranded DNA. This dual specificity was not present early but was detected by day 10 after immunization. Some of these cross-reactive antibodies deposit in kidneys in a pattern similar to what is seen in autoimmune disease. These results demonstrate that autoantibodies arise at a high frequency as part of a response to foreign antigen. It has previously been shown that autoreactivity is regulated by central deletion; these data demonstrate a need for negative selection in peripheral lymphoid organs also, to regulate autoantibodies acquiring their self-specificity by somatic mutation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insertion of foreign DNA into an established mammalian genome can extensively alter the patterns of cellular DNA methylation. Adenovirus type 12 (Ad12)-transformed hamster cells, Ad12-induced hamster tumor cells, or hamster cells carrying integrated DNA of bacteriophage lambda were used as model systems. DNA methylation levels were examined by cleaving cellular DNA with Hpa II, Msp I, or Hha I, followed by Southern blot hybridization with 32P-labeled, randomly selected cellular DNA probes. For several, but not all, cellular DNA segments investigated, extensive increases in DNA methylation were found in comparison with the methylation patterns in BHK21 or primary Syrian hamster cells. In eight different Ad12-induced hamster tumors, moderate increases in DNA methylation were seen. Increased methylation of cellular genes was also documented in two hamster cell lines with integrated Ad12 DNA without the Ad12-transformed phenotype, in one cloned BHK21 cell line with integrated plasmid DNA, and in at least three cloned BHK21 cell lines with integrated lambda DNA. By fluorescent in situ hybridization, the cellular hybridization probes were located to different hamster chromosomes. The endogenous intracisternal A particle genomes showed a striking distribution on many hamster chromosomes, frequently on their short arms. When BHK21 hamster cells were abortively infected with Ad12, increases in cellular DNA methylation were not seen. Thus, Ad12 early gene products were not directly involved in increasing cellular DNA methylation. We attribute the alterations in cellular DNA methylation, at least in part, to the insertion of foreign DNA. Can alterations in the methylation profiles of hamster cellular DNA contribute to the generation of the oncogenic phenotype?