5 resultados para Footprints, Fossil
em National Center for Biotechnology Information - NCBI
Resumo:
Recolonization of Europe by forest tree species after the last glaciation is well documented in the fossil pollen record. This spread may have been achieved at low densities by rare events of long-distance dispersal, rather than by a compact wave of advance, generating a patchy genetic structure through founder effects. In long-lived oak species, this structure could still be discernible by using maternally transmitted genetic markers. To test this hypothesis, a fine-scale study of chloroplast DNA (cpDNA) variability of two sympatric oak species was carried out in western France. The distributions of six cpDNA length variants were analyzed at 188 localities over a 200 × 300 km area. A cpDNA map was obtained by applying geostatistics methods to the complete data set. Patches of several hundred square kilometers exist which are virtually fixed for a single haplotype for both oak species. This local systematic interspecific sharing of the maternal genome strongly suggests that long-distance seed dispersal events followed by interspecific exchanges were involved at the time of colonization, about 10,000 years ago.
Resumo:
Retroviral DNA integration is mediated by the preintegration complex, a large nucleoprotein complex derived from the core of the infecting virion. We previously have used Mu-mediated PCR to probe the nucleoprotein organization of Moloney murine leukemia virus preintegration complexes. A region of protection spans several hundred base pairs at each end of the viral DNA, and strong enhancements are present near the termini. Here, we show that these footprints reflect a specific association between integrase and the viral DNA ends in functional preintegration complexes. Barrier-to-autointegration factor, a cellular protein that blocks autointegration of Moloney murine leukemia virus DNA, also plays an indirect role in generating the footprints at the ends of the viral DNA. We have exploited Mu-mediated PCR to examine the effect of mutations at the viral DNA termini on complex formation. We find that a replication competent mutant with a deletion at one end of the viral DNA still exhibits a strong enhancement about 20 bp from the terminus of the mutant DNA end. The site of the enhancement therefore appears to be at a fixed distance from the ends of the viral DNA. We also find that a mutation at one end of the viral DNA, which renders the virus incompetent for replication, abolishes the enhancements and protection at both the U3 and U5 ends. A pair of functional viral DNA ends therefore are required to interact before the chemical step of 3′ end processing.
Resumo:
Molecular and morphological data have important roles in illuminating evolutionary history. DNA data often yield well resolved phylogenies for living taxa, but are generally unattainable for fossils. A distinct advantage of morphology is that some types of morphological data may be collected for extinct and extant taxa. Fossils provide a unique window on evolutionary history and may preserve combinations of primitive and derived characters that are not found in extant taxa. Given their unique character complexes, fossils are critical in documenting sequences of character transformation over geologic time and may elucidate otherwise ambiguous patterns of evolution that are not revealed by molecular data alone. Here, we employ a methodological approach that allows for the integration of molecular and paleontological data in deciphering one of the most innovative features in the evolutionary history of mammals—laryngeal echolocation in bats. Molecular data alone, including an expanded data set that includes new sequences for the A2AB gene, suggest that microbats are paraphyletic but do not resolve whether laryngeal echolocation evolved independently in different microbat lineages or evolved in the common ancestor of bats and was subsequently lost in megabats. When scaffolds from molecular phylogenies are incorporated into parsimony analyses of morphological characters, including morphological characters for the Eocene taxa Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx, the resulting trees suggest that laryngeal echolocation evolved in the common ancestor of fossil and extant bats and was subsequently lost in megabats. Molecular dating suggests that crown-group bats last shared a common ancestor 52 to 54 million years ago.
Resumo:
Angiosperm paleobotany has widened its horizons, incorporated new techniques, developed new databases, and accepted new questions that can now focus on the evolution of the group. The fossil record of early flowering plants is now playing an active role in addressing questions of angiosperm phylogeny, angiosperm origins, and angiosperm radiations. Three basic nodes of angiosperm radiations are identified: (i) the closed carpel and showy radially symmetrical flower, (ii) the bilateral flower, and (iii) fleshy fruits and nutritious nuts and seeds. These are all coevolutionary events and spread out through time during angiosperm evolution. The proposal is made that the genetics of the angiosperms pressured the evolution of the group toward reproductive systems that favored outcrossing. This resulted in the strongest selection in the angiosperms being directed toward the flower, fruits, and seeds. That is why these organs often provide the best systematic characters for the group.
Resumo:
DNA was extracted from the extinct American mastodon, the extinct woolly mammoth, and the modern Asian and African elephants to test the traditional morphologically based phylogeny within Elephantidae. Phylogenetic analyses of the aligned sequences of the mitochondrial gene cytochrome b support a monophyletic Asian elephant-woolly mammoth clade when the American mastodon is used as an outgroup. Previous molecular studies were unable to resolve the relationships of the woolly mammoth, Asian elephant, and African elephant because the sequences appear to have evolved at heterogeneous rates and inappropriate outgroups were used for analysis. The results demonstrate the usefulness of fossil molecular data from appropriate sister taxa for resolving phylogenies of highly derived or early radiating lineages.