3 resultados para Food management

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews food (especially cereal) production trends and prospects for the world and its main regions. Despite fears to the contrary, in recent years we have seen continued progress toward better methods of feeding humanity. Sub-Saharan Africa is the sole major exception. Looking to the future, this paper argues that the continuation of recent cereal yield trends should be sufficient to cope with most of the demographically driven expansion of cereal demand that will occur until the year 2025. However, because of an increasing degree of mismatch between the expansion of regional demand and the potential for supply, there will be a major expansion of world cereal (and noncereal food) trade. Other consequences for global agriculture arising from demographic growth include the need to use water much more efficiently and an even greater dependence on nitrogen fertilizers (e.g., South Asia). Farming everywhere will depend more on information-intensive agricultural management procedures. Moreover, despite continued general progress, there still will be a significant number of undernourished people in 2025. Signs of heightened harvest variability, especially in North America, are of serious concern. Thus, although future general food trends are likely to be positive, in some respects we also could be entering a more volatile world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent predictions of growth in human populations and food supply suggest that there will be a need to substantially increase food production in the near future. One possible approach to meeting this demand, at least in part, is the control of pests and diseases, which currently cause a 30–40% loss in available crop production. In recent years, strategies for controlling pests and diseases have tended to focus on short-term, single-technology interventions, particularly chemical pesticides. This model frequently applies even where so-called integrated pest management strategies are used because in reality, these often are dominated by single technologies (e.g., biocontrol, host plant resistance, or biopesticides) that are used as replacements for chemicals. Very little attention is given to the interaction or compatibility of the different technologies used. Unfortunately, evidence suggests that such approaches rarely yield satisfactory results and are unlikely to provide sustainable pest control solutions for the future. Drawing on two case histories, this paper demonstrates that by increasing our basic understanding of how individual pest control technologies act and interact, new opportunities for improving pest control can be revealed. This approach stresses the need to break away from the existing single-technology, pesticide-dominated paradigm and to adopt a more ecological approach built around a fundamental understanding of population biology at the local farm level and the true integration of renewable technologies such as host plant resistance and natural biological control, which are available to even the most resource-poor farmers.