2 resultados para Fomenko, Anatoli

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pax6, a highly conserved member of the paired homeodomain transcription factor family that plays essential roles in ocular, neural, and pancreatic development and effects asymmetric transient dorsal expression during pituitary development, with its expression extinguished before the ventral → dorsal appearance of specific cell types. Analysis of pituitary development in the Small eye and Pax6 −/− mouse mutants reveals that the dorsoventral axis of the pituitary gland becomes ventralized, with dorsal extension of the transcriptional determinants of ventral cell types, particularly PFrk. This ventralization is followed by a marked decrease in terminally differentiated dorsal somatotrope and lactotrope cell types and a marked increase in the expression of markers of the ventral thyrotrope cells and SF-1-expressing cells of gonadotrope lineage. We suggest that the transient dorsal expression of Pax6 is essential for establishing a sharp boundary between dorsal and ventral cell types, based on the inhibition of Shh ventral signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pituitary cell types arise in a temporally and spatially specific fashion, in response to combinatorial actions of transcription factors induced by transient signaling gradients. The critical transcriptional determinants of the two pituitary cell types that express the pro-opiomelanocortin (POMC) gene, the anterior lobe corticotropes, producing adrenocorticotropin, and the intermediate lobe melanotropes, producing melanocyte-stimulating hormone (MSHα), have remained unknown. Here, we report that a member of the T-box gene family, Tbx19, which is expressed only in the rostral ventral diencephalon and pituitary gland, commencing on e11.5, marks pituitary cells that will subsequently express the POMC gene and is capable of altering progression of ventral cell types and inducing adrenocorticotropin in rostral tip cells. It is suggested that Tbx19, depending on the presence of synergizing transcription factors, can activate POMC gene expression and repress the α glycoprotein subunit and thyroid-stimulating hormone β promoters.