2 resultados para Flotte privée

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant adeno-associated virus (AAV) vectors have been used to transduce murine skeletal muscle as a platform for secretion of therapeutic proteins. The utility of this approach for treating alpha-1-antitrypsin (AAT) deficiency was tested in murine myocytes in vitro and in vivo. AAV vectors expressing the human AAT gene from either the cytomegalovirus (CMV) promoter (AAV-C-AT) or the human elongation factor 1-α promoter (AAV-E-AT) were examined. In vitro in C2C12 murine myoblasts, the expression levels in transient transfections were similar between the two vectors. One month after transduction, however, the human elongation factor 1 promoter mediated 10-fold higher stable human AAT expression than the CMV promoter. In vivo transduction was performed by injecting doses of up to 1.4 × 1013 particles into skeletal muscles of several mouse strains (C57BL/6, BALB/c, and SCID). In vivo, the CMV vector mediated higher levels of expression, with sustained serum levels over 800 μg/ml in SCID and over 400 μg/ml in C57BL/6 mice. These serum concentrations are 100,000-fold higher than those previously observed with AAV vectors in muscle and are at levels which would be therapeutic if achieved in humans. High level expression was delayed for several weeks but was sustained for over 15 wk. Immune responses were dependent upon the mouse strain and the vector dosage. These data suggest that recombinant AAV vector transduction of skeletal muscle could provide a means for replacing AAT or other essential serum proteins but that immune responses may be elicited under certain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here that the DNA-dependent protein kinase (DNA-PK) affects the molecular fate of the recombinant adeno-associated virus (rAAV) genome in skeletal muscle. rAAV-human α1-antitrypsin (rAAV-hAAT) vectors were delivered by intramuscular injection to either C57BL/6 (DNA-PKcs+) or C57BL/6-SCID [severe combined immunodeficient (SCID), DNA-PKcs−] mice. In both strains, high levels of transgene expression were sustained for up to 1 year after a single injection. Southern blot analysis showed that rAAV genomes persisted as linear episomes for more than 1 year in SCID mice, whereas only circular episomal forms were observed in the C57BL/6 strain. These results indicate that DNA-PK is involved in the formation of circular rAAV episomes.