1 resultado para Floquet Multiplier
em National Center for Biotechnology Information - NCBI
Filtro por publicador
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (2)
- CentAUR: Central Archive University of Reading - UK (12)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- Dalarna University College Electronic Archive (2)
- Digital Commons at Florida International University (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (12)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (8)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Metodista de São Paulo (2)
- Université de Lausanne, Switzerland (8)
- Université de Montréal (3)
- Université de Montréal, Canada (22)
- Université Laval Mémoires et thèses électroniques (3)
- University of Connecticut - USA (1)
- University of Michigan (26)
- University of Queensland eSpace - Australia (10)
- WestminsterResearch - UK (1)
Resumo:
Quantum groups have been studied intensively for the last two decades from various points of view. The underlying mathematical structure is that of an algebra with a coproduct. Compact quantum groups admit Haar measures. However, if we want to have a Haar measure also in the noncompact case, we are forced to work with algebras without identity, and the notion of a coproduct has to be adapted. These considerations lead to the theory of multiplier Hopf algebras, which provides the mathematical tool for studying noncompact quantum groups with Haar measures. I will concentrate on the *-algebra case and assume positivity of the invariant integral. Doing so, I create an algebraic framework that serves as a model for the operator algebra approach to quantum groups. Indeed, the theory of locally compact quantum groups can be seen as the topological version of the theory of quantum groups as they are developed here in a purely algebraic context.