8 resultados para Flea beetles.

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rickettsial bacterium in the genus Wolbachia is the cause of a unidirectional reproductive incompatibility observed between two major beetle pests of maize, the western corn rootworm, Diabrotica virgifera virgifera, and the Mexican corn rootworm, D. v. zeae. These subspecies are allopatric except for two known regions of sympatry in Texas and Mexico. We demonstrate that populations of D. v. virgifera, with the exception of two populations in southern Arizona, are infected with a strain of Wolbachia. Populations of D. v. zeae are not infected. Treatment of D. v. virgifera with tetracycline eliminated the Wolbachia and removed the reproductive incompatibility. Similar patterns of reproductive incompatibility exist among taxa of the cricket genus Gryllus. Gryllus assimilis, G. integer, G. ovisopis, G. pennsylvanicus, and G. rubens are infected with Wolbachia whereas G. firmus is usually not. Populations of G. rubens and G. ovisopis carry the same Wolbachia strain, which is distinct from that of G. integer. G. pennsylvanicus is infected with two Wolbachia strains, that found in G. rubens and one unique to G. pennsylvanicus. Moreover, a proportion of G. pennsylvanicus individuals harbors both strains. Wolbachia may have influenced speciation in some members of the genus Gryllus by affecting the degree of hybridization between species. Given that Wolbachia infections are relatively common in insects, it is likely that other insect hybrid zones may be influenced by infections with Wolbachia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pupal defensive secretion of the 24-pointed ladybird beetle, Subcoccinella vigintiquatuorpunctata, consists of a mixture of macrocyclic polyamines, dominated by the three dimeric, 30-membered macrocycles 11-13, derived from the two building blocks 11-(2-hydoxyethylamino)-5-tetradecenoic acid (9) and 11-(2-hydoxyethylamino)-5,8-tetradecadienoic acid (10). Smaller amounts of the four possible cyclic trimers of 9 and 10 were also detected, corresponding to 45-membered macrocycles. Structural assignments were based on NMR-spectroscopic investigations and HPLC–MS analyses. In addition, the all-S absolute configuration of the S. vigintiquatuorpunctata macrocycles was determined by comparison of derivatives of the natural material with enantiomerically pure synthetic samples. Comparing this alkaloid mixture with that of the pupal defensive secretion in related ladybird beetle species indicates that the degree of oligomerization of the 2-hydroxyethylamino carboxylic acid building blocks can be carefully controlled by the insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combination of molecular phylogenetic analyses of Chrysomelina beetles and chemical data of their defensive secretions indicate that two lineages independently developed, from an ancestral autogenous metabolism, an energetically efficient strategy that made the insect tightly dependent on the chemistry of the host plant. However, a lineage (the interrupta group) escaped this subordination through the development of a yet more derived mixed metabolism potentially compatible with a large number of new host-plant associations. Hence, these analyses on leaf beetles document a mechanism that can explain why high levels of specialization do not necessarily lead to “evolutionary dead ends.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel mechanism of reciprocal behavioral agonist-antagonist activities of enantiomeric pheromones plays a pivotal role in overcoming the signal-to-noise problem derived from the use of a single-constituent pheromone system in scarab beetles. Female Anomala osakana produce (S, Z)-5-(+)-(1-decenyl)oxacyclopentan-2-one, which is highly attractive to males; the response is completely inhibited even by 5% of its antipode. These two enantiomers have reverse roles in the Popillia japonica sex pheromone system. Chiral GC-electroantennographic detector experiments suggest that A. osakana and P. japonica have both R and S receptors that are responsible for behavioral agonist and antagonist responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The California five-spined ips, Ips paraconfusus Lanier, produces the myrcene-derived acyclic monoterpene alcohols ipsenol (2-methyl-6-methylene-7-octen-4-ol) and ipsdienol (2-methyl-6-methylene-2,7-octadien-4-ol) as components of its aggregation pheromone. The pine engraver beetle, Ips pini (Say), produces only ipsdienol. Previous studies have shown that myrcene, a monoterpene in the pines colonized by these beetles, is a direct precursor to these pheromone components. In vivo radiolabeling studies reported here showed that male I. paraconfusus incorporated [1-14C]acetate into ipsenol, ipsdienol, and amitinol (trans-2-methyl-6-methylene-3,7-octadien-2-ol), while male I. pini incorporated [1-14C]acetate into ipsdienol and amitinol. Females of these species produced neither labeled nor unlabeled pheromone components. The purified radiolabeled monoterpene alcohols from-males were identified by comparison of their HPLC and GC retention times with those of unlabeled standards. HPLC-purified fractions containing the individual radiolabeled components were analyzed by GC-MS and were shown to include only the pure alcohols. To further confirm that ipsdienol and ipsenol were radiolabeled, diastereomeric ester derivatives of the isolated alcohols were synthesized and analyzed by HPLC and GC-MS. After derivatization of the radiolabeled alcohols, the HPLC analysis demonstrated expected shifts in retention times with conservation of naturally occurring stereochemistry. The results provide direct evidence for de novo biosynthesis of ipsenol, ipsdienol, and amitinol by bark beetles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grand fir (Abies grandis) saplings and derived cell cultures are useful systems for studying the regulation of defensive oleoresinosis in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced production of monoterpene olefins (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. The pathways and enzymes involved in monoterpene and diterpene resin acid biosynthesis are described, as are the coinduction kinetics following stem injury as determined by resin analysis, enzyme activity measurements, and immunoblotting. The effects of seasonal development, light deprivation, and water stress on constitutive and wound-induced oleoresinosis are reported. Future efforts, including a PCR-based cloning strategy, to define signal transduction in the wound response and the resulting gene activation processes are delineated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allele frequency variation at the phosphoglucose isomerase (PGI) locus in Californian populations of the beetle Chrysomela aeneicollis suggests that PGI may be undergoing natural selection. We quantified (i) apparent Michaelis-Menten constant (Km) of fructose 6-phosphate at different temperatures and (ii) thermal stability for three common PGI genotypes (1–1, 1–4, and 4–4). We also measured air temperature (Ta) and beetle body temperature (Tb) in three montane drainages in the Sierra Nevada, California. Finally, we measured 70-kDa heat shock protein (Hsp70) expression in field-collected and laboratory-acclimated beetles. We found that PGI allele 1 predominated in the northernmost drainage, Rock Creek (RC), which was also significantly cooler than the southernmost drainage, Big Pine Creek (BPC), where PGI allele 4 predominated. Allele frequencies and air temperatures were intermediate in the middle drainage, Bishop Creek (BC). Differences among genotypes in Km (1–1 > 1–4 > 4–4) and thermal stability (4–4 > 1–4 > 1–1) followed a pattern consistent with temperature adaptation. In nature, Tb was closely related to Ta. Hsp70 expression in adult beetles decreased with elevation and differed among drainages (BPC > BC > RC). After laboratory acclimation (8 days, 20°C day, 4°C night) and heat shock (4 h, 28–36°C), Hsp70 expression was greater for RC than BPC beetles. In RC, field-collected beetles homozygous for PGI 1–1 had higher Hsp70 levels than heterozygotes or a 4–4 homozygote. These results reveal functional and physiological differences among PGI genotypes, which suggest that montane populations of this beetle are locally adapted to temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surveys of butterfly and moth diversity in tropical forest fragments suggest that nocturnality confers a dispersal, and possibly a survival, advantage. The butterfly faunas of smaller fragments were depauperate; in contrast, the species richness of nocturnal moths was similar in all fragments and even in pasture. The lack of correlation between butterfly and moth species richness among fragments (r2 = 0.005) is best explained by movements of moths at night when ambient conditions in forest and pasture are most similar; butterflies face substantial daytime temperature, humidity, and solar radiation barriers. This interpretation is supported by information on birds, beetles, and bats.