42 resultados para Fertilization in vitro, Human
em National Center for Biotechnology Information - NCBI
Resumo:
Human sperm centrosome reconstitution and the parental contributions to the zygotic centrosome are examined in mammalian zygotes and after exposure of spermatozoa to Xenopus laevis cell-free extracts. The presence and inheritance of the conserved centrosomal constituents γ-tubulin, centrin, and MPM-2 (which detects phosphorylated epitopes) are traced, as is the sperm microtubule-nucleating capability on reconstituted centrosomes. γ-Tubulin is biparentally inherited in humans (maternal >> than paternal): Western blots detect the presence of paternal γ-tubulin. Recruitment of maternal γ-tubulin to the sperm centrosome occurs after sperm incorporation in vivo or exposure to cell-free extract, especially after sperm “priming” induced by disulfide bond reduction. Centrin is found in the proximal sperm centrosomal region, demonstrates expected calcium sensitivity, but appears absent from the zygotic centrosome after sperm incorporation or exposure to extracts. Sperm centrosome phosphorylation is detected after exposure of primed sperm to egg extracts as well as during the early stages of sperm incorporation after fertilization. Finally, centrosome reconstitution in cell-free extracts permits sperm aster microtubule assembly in vitro. Collectively, these results support a model of a blended zygotic centrosome composed of maternal constituents attracted to an introduced paternal template after insemination.
Resumo:
Splicing of nuclear precursors of mRNA (pre-mRNA) involves dynamic interactions between the RNA constituents of the spliceosome. The rearrangement of RNA–RNA interactions, such as the unwinding of the U4/U6 duplex, is believed to be driven by ATP-dependent RNA helicases. We recently have shown that spliceosomal U5 small nuclear ribonucleoproteins (snRNPs) from HeLa cells contain two proteins, U5–200kD and U5–100kD, which share homology with the DEAD/DEXH-box families of RNA helicases. Here we demonstrate that purified U5 snRNPs exhibit ATP-dependent unwinding of U4/U6 RNA duplices in vitro. To identify the protein responsible for this activity, U5 snRNPs were depleted of a subset of proteins under high salt concentrations and assayed for RNA unwinding. The activity was retained in U5 snRNPs that contain the U5–200kD protein but lack U5–100kD, suggesting that the U5–200kD protein could mediate U4/U6 duplex unwinding. Finally, U5–200kD was purified to homogeneity by glycerol gradient centrifugation of U5 snRNP proteins in the presence of sodium thiocyanate, followed by ion exchange chromatography. The RNA unwinding activity was found to reside exclusively with the U5–200kD DEXH-box protein. Our data raise the interesting possibility that this RNA helicase catalyzes unwinding of the U4/U6 RNA duplex in the spliceosome.
Resumo:
Mitochondria have been proposed to possess base excision repair processes to correct oxidative damage to the mitochondrial genome. As the only DNA polymerase (pol) present in mitochondria, pol γ is necessarily implicated in such processes. Therefore, we tested the ability of the catalytic subunit of human pol γ to participate in uracil-provoked base excision repair reconstituted in vitro with purified components. Subsequent to actions of uracil-DNA glycosylase and apurinic/apyrimidinic endonuclease, human pol γ was able to fill a single nucleotide gap in the presence of a 5′ terminal deoxyribose phosphate (dRP) flap. We report here that the catalytic subunit of human pol γ catalyzes release of the dRP residue from incised apurinic/apyrimidinic sites to produce a substrate for DNA ligase. The heat sensitivity of this activity suggests the dRP lyase function requires a three-dimensional protein structure. The dRP lyase activity does not require divalent metal ions, and the ability to trap covalent enzyme-DNA complexes with NaBH4 strongly implicates a Schiff base intermediate in a β-elimination reaction mechanism.
Resumo:
Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20–30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.
Resumo:
The gene-mutation-cancer hypothesis holds that mutated cellular protooncogenes, such as point-mutated proto-ras, “play a dominant part in cancer,” because they are sufficient to transform transfected mouse cell lines in vitro [Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York)]. However, in cells transformed in vitro mutated human ras genes are expressed more than 100-fold than in the cancers from which they are isolated. In view of the discrepancy between the very low levels of ras transcription in cancers and the very high levels in cells transformed in vitro, we have investigated the minimal level of human ras expression for transformation in vitro. Using point-mutated human ras genes recombined with different promoters from either human metallothionein-IIA or human fibronectin or from retroviruses we found dominant in vitro transformation of the mouse C3H cell line only with ras genes linked to viral promoters. These ras genes were expressed more than 120-fold higher than are native ras genes of C3H cells. The copy number of transfected ras genes ranged from 2–6 in our system. In addition, nondominant transformation was observed in a small percentage (2–7%) of C3H cells transfected with ras genes that are expressed less than 20 times higher than native C3H ras genes. Because over 90% of cells expressing ras at this moderately enhanced level were untransformed, transformation must follow either a nondominant ras mechanism or a non-ras mechanism. We conclude that the mutated, but normally expressed, ras genes found in human and animal cancers are not likely to “play a dominant part in cancer.” The conclusion that mutated ras genes are not sufficient or dominant for cancer is directly supported by recent discoveries of mutated ras in normal animals, and in benign human tissue, “which has little potential to progress” [Jen, J., Powell, S. M., Papadopoulos, N., Smith, K. J., Hamilton, S. R., Vogelstein, B. & Kinzler, K. W. (1994) Cancer Res. 54, 5523–5526]. Even the view that mutated ras is necessary for cancer is hard to reconcile with (i) otherwise indistinguishable cancers with and without ras mutations, (ii) metastases of the same human cancers with and without ras mutations, (iii) retroviral ras genes that are oncogenic without point mutations, and (iv) human tumor cells having spontaneously lost ras mutation but not tumorigencity.
Resumo:
Human hematopoiesis originates in a population of stem cells with transplantable lympho-myeloid reconstituting potential, but a method for quantitating such cells has not been available. We now describe a simple assay that meets this need. It is based on the ability of sublethally irradiated immunodeficient nonobese diabetic–scid/scid (NOD/SCID) mice to be engrafted by intravenously injected human hematopoietic cells and uses limiting dilution analysis to measure the frequency of human cells that produce both CD34−CD19+ (B-lymphoid) and CD34+ (myeloid) colony-forming cell progeny in the marrow of such recipients 6 to 8 weeks post-transplant. Human cord blood (CB) contains ≈5 of these competitive repopulating units (CRU) per ml that have a similar distribution between the CD38− and CD38+ subsets of CD34+ CB cells as long-term culture-initiating cells (LTC-IC) (4:1 vs. 2:1). Incubation of purified CD34+CD38− human CB cells in serum-free medium containing flt-3 ligand, Steel factor, interleukin 3, interleukin 6, and granulocyte colony-stimulating factor for 5–8 days resulted in a 100-fold expansion of colony-forming cells, a 4-fold expansion of LTC-IC, and a 2-fold (but significant, P < 0.02) increase in CRU. The culture-derived CRU, like the original CB CRU, generated pluripotent, erythroid, granulopoietic, megakaryopoietic, and pre-B cell progeny upon transplantation into NOD/SCID mice. These findings demonstrate an equivalent phenotypic heterogeneity amongst human CB cells detectable as CRU and LTC-IC. In addition, their similarly modest response to stimulation by a combination of cytokines that extensively amplify LTC-IC from normal adult marrow underscores the importance of ontogeny-dependent changes in human hematopoietic stem cell proliferation and self-renewal.
Resumo:
Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.
Resumo:
In this paper, we report direct measurement of an influx of extracellular Ca2+ induced by gamete fusion in flowering plants. This result was obtained during maize in vitro fertilization with the use of an extracellular Ca2+-selective vibrating probe. Ca2+ influx recorded at the surface of isolated egg cells, with or without adhesion of a male sperm cell, was close to zero and stable over time. Gamete fusion, however, triggered a Ca2+ influx in the vicinity of the sperm entry site with a delay of 1.8 ± 0.6 sec. The Ca2+ influx spread subsequently through the whole egg cell plasma membrane as a wavefront, progressing at an estimated rate of 1.13 μm⋅sec−1. Once established, Ca2+ influx intensities were sustained, monotonic and homogeneous over the whole egg cell, with an average peak influx of 14.92 pmol⋅cm−2⋅sec−1 and an average duration of 24.4 min. The wavefront spread of channel activation correlates well with the cytological modifications induced by fertilization, such as egg cell contraction, and with the cytosolic Ca2+ (c[Ca2+]) elevation previously reported. Calcium influx was inhibited effectively by gadolinium, possibly implicating mechanosensitive channels. Furthermore, artificial influxes created by incubation with Ca2+ ionophores mimicked some aspects of egg activation. Taken together, these results suggest that, during fertilization in higher plants, gamete membrane fusion starts the first embryonic events by channel opening and Ca2+ influx. In turn, c[Ca2+] may work as a trigger and possibly a space and time coordinator of many aspects of egg activation.
Resumo:
CD1 molecules are specialized in presenting lipids to T lymphocytes, but identification and isolation of CD1-restricted lipidspecific T cells has been hampered by the lack of reliable and sensitive techniques. We here report the construction of CD1d–glycolipid tetramers from fully denatured human CD1d molecules by using the technique of oxidative refolding chromatography. We demonstrate that chaperone- and foldase-assisted refolding of denatured CD1d molecules and β2-microglobulin in the presence of synthetic lipids is a rapid method for the generation of functional and specific CD1d tetramers, which unlike previously published protocols ensures isolation of CD1d tetramers loaded with a single lipid species. The use of human CD1d–α-galactosylceramide tetramers for ex vivo staining of peripheral blood lymphocytes and intrahepatic T cells from patients with viral liver cirrhosis allowed for the first time simultaneous analysis of frequency and specificity of natural killer T cells in human clinical samples. Application of this protocol to other members of the CD1 family will provide powerful tools to investigate lipid-specific T cell immune responses in health and in disease.
Resumo:
A cDNA encoding human gamma-glutamyl hydrolase has been identified by searching an expressed sequence tag data base and using rat gamma-glutamyl hydrolase cDNA as the query sequence. The cDNA encodes a 318-amino acid protein of Mr 35,960. The deduced amino acid sequence of human gamma-glutamyl hydrolase shows 67% identity to that of rat gamma-glutamyl hydrolase. In both rat and human the 24 amino acids preceding the N terminus constitute a structural motif that is analogous to a leader or signal sequence. There are four consensus asparagine glycosylation sites in the human sequence, with three of them conserved in the rat enzyme. Expression of both the human and rat cDNA in Escherichia coli produced antigenically related proteins with enzyme activities characteristic of the native human and rat enzymes, respectively, when methotrexate di- or pentaglutamate were used as substrates. With the latter substrate the rat enzyme cleaved the innermost gamma-glutamyl linkage resulting in the sole production of methotrexate as the pteroyl containing product. The human enzyme differed in that it produced methotrexate tetraglutamate initially, followed by the triglutamate, and then the diglutamate and methotrexate. Hence the rat enzyme is an endopeptidase with methotrexate pentaglutamate as substrate, whereas the human enzyme exhibits exopeptidase activity. Another difference is that the expressed rat enzyme is equally active on methotrexate di- and pentaglutamate whereas the human enzyme has severalfold greater activity on methotrexate pentaglutamate compared with the diglutamate. These properties are consistent with the enzymes derived from human and rat sources.
Resumo:
Human herpesviruses 6 and 7 (HHV-6 and HHV-7) are prevalent lymphotropic viruses that infect more than 80% of children at infancy or during early childhood. Infection ranges from asymptomatic to severe disease. HHV-6B causes exanthem subitum. The virus can be recovered from peripheral blood mononuclear cells during the acute phase of exanthem subitum, but the host remains latently infected throughout life. In immunocompromised patients undergoing kidney, liver, or bone marrow transplantation latent HHV-6B is reactivated, at times causing severe or fatal disease. Here, we describe the establishment of an in vitro system for reactivation of HHV-6B and HHV-7 from latency. HHV-7 is reactivated from latently infected peripheral blood mononuclear cells by T-cell activation. HHV-6B could not be reactivated under similar conditions; however, the latent HHV-6B could be recovered after the cells were infected with HHV-7. Once reactivated, the HHV-6B genomes became prominent and the HHV-7 disappeared. We conclude that HHV-7 can provide a transacting function(s) mediating HHV-6 reactivating from latency. Understanding the activation process is critical for the development of treatments to control the activation of latent viruses so as to avoid these sometimes life threatening infections in transplant recipients.
Resumo:
The mechanisms underlying the menstrual lysis leading to shedding of the human endometrium and its accompanying bleeding are still largely unknown. In particular, whether breakdown of the endometrial fibrillar extra-cellular matrix that precedes bleeding depends on aspartic-, cysteine-, serine-, or metalloproteinases remains unclear. In the present study, menstrual regression of the human endometrium was mimicked in organ culture. Whereas sex steroids could preserve tissue integrity only in nonperimenstrual explants, matrix breakdown upon sex steroid deprivation was completely and reversibly inhibited at all stages of the menstrual cycle by specific inhibitors of matrix metalloproteinases, but not by inhibitors of the other classes of proteinases. Matrix metalloproteinases are thus identified as the key class of proteinases involved in the initiation of menstruation.
Resumo:
Emerging evidence suggests that an amplifiable protease cascade consisting of multiple aspartate specific cysteine proteases (ASCPs) is responsible for the apoptotic changes observed in mammalian cells undergoing programmed cell death. Here we describe the cloning of two novel ASCPs from human Jurkat T-lymphocytes. Like other ASCPs, the new proteases, named Mch4 and Mch5, are derived from single chain proenzymes. However, their putative active sites contain a QACQG pentapeptide instead of the QACRG present in ail known ASCPs. Also, their N termini contain FADD-like death effector domains, suggesting possible interaction with FADD. Expression of Mch4 in Escherichia coli produced an active protease that, like other ASCPs, was potently inhibited (Kj = 14 nM) by the tetrapeptide aldehyde DEVD-CHO. Interestingly, both Mch4 and the serine protease granzyme B cleave recombinant proCPP32 and proMch3 at a conserved IXXD-S sequence to produce the large and small subunits of the active proteases. Granzyme B also cleaves proMch4 at a homologous IXXD-A processing sequence to produce mature Mch4. These observations suggest that CPP32 and Mch3 are targets of mature Mch4 protease in apoptotic cells. The presence of the FADD-like domains in Mch4 and Mch5 suggests a role for these proteases in the Fas-apoptotic pathway. In addition, these proteases could participate in the granzyme B apoptotic pathways.
Resumo:
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation.
Resumo:
Replication factor C (RFC, also called Activator I) is part of the processive eukaryotic DNA polymerase holoenzymes. The processive elongation of DNA chains requires that DNA polymerases are tethered to template DNA at primer ends. In eukaryotes the ring-shaped homotrimeric protein, proliferating cell nuclear antigen (PCNA), ensures tight template-polymerase interaction by encircling the DNA strand. Proliferating cell nuclear antigen is loaded onto DNA through the action of RFC in an ATP-dependent reaction. Human RFC is a protein complex consisting of five distinct subunits that migrate through SDS/polyacrylamide gels as protein bands of 140, 40, 38, 37, and 36 kDa. All five genes encoding the RFC subunits have been cloned and sequenced. A functionally identical RFC complex has been isolated from Saccharomyces cerevisiae and the deduced amino acid sequences among the corresponding human and yeast subunits are homologous. Here we report the expression of the five cloned human genes using an in vitro coupled transcription/translation system and show that the gene products form a complex resembling native RFC that is active in supporting an RFC-dependent replication reaction. Studies on the interactions between the five subunits suggest a cooperative mechanism in the assembly of the RFC complex. A three-subunit core complex, consisting of p36, p37, and p40, was identified and evidence is presented that p38 is essential for the interaction between this core complex and the large p140 subunit.