6 resultados para Fennel aphid
em National Center for Biotechnology Information - NCBI
Resumo:
(E)-β-Farnesene is a sesquiterpene semiochemical that is used extensively by both plants and insects for communication. This acyclic olefin is found in the essential oil of peppermint (Mentha x piperita) and can be synthesized from farnesyl diphosphate by a cell-free extract of peppermint secretory gland cells. A cDNA from peppermint encoding (E)-β-farnesene synthase was cloned by random sequencing of an oil gland library and was expressed in Escherichia coli. The corresponding synthase has a deduced size of 63.8 kDa and requires a divalent cation for catalysis (Km for Mg2+ ≈ 150 μM; Km for Mn2+ ≈ 7 μM). The sesquiterpenoids produced by the recombinant enzyme, as determined by radio-GC and GC-MS, are (E)-β-farnesene (85%), (Z)-β-farnesene (8%), and δ-cadinene (5%) with the native C15 substrate farnesyl diphosphate (Km ≈ 0.6 μM; Vrel = 100) and Mg2+ as cofactor, and (E)-β-farnesene (98%) and (Z)-β-farnesene (2%) with Mn2+ as cofactor (Vrel = 80). With the C10 analog, GDP, as substrate (Km = 1.5 μM; Vrel = 3 with Mg2+ as cofactor), the monoterpenes limonene (48%), terpinolene (15%), and myrcene (15%) are produced.
Resumo:
We analyzed the distribution of the cauliflower mosaic virus (CaMV) aphid transmission factor (ATF), produced via a baculovirus recombinant, within Sf9 insect cells. Immunogold labeling revealed that the ATF colocalizes with an atypical cytoskeletal network. Detailed observation by electron microscopy demonstrated that this network was composed of microtubules decorated with paracrystalline formations, characteristic of the CaMV ATF. A derivative mutant of the ATF, unable to self-assemble into paracrystals, was also analyzed. This mutant formed a net-like structure, with a mesh of four nanometers, tightly sheathing microtubules. Both the ATF– and the derivative mutant–microtubule complexes were highly stable. They resisted dilution-, cold-, and calcium-induced microtubule disassembly as well as a combination of all three for over 6 hr. CaMV ATF cosedimented with microtubules and, surprisingly, it bound to Taxol-stabilized microtubules at high ionic strength, thus suggesting an atypical interaction when compared with that usually described for microtubule-binding proteins. Using immunofluorescence double labeling we also demonstrated that the CaMV ATF colocalizes with the microtubule network when expressed in plant cells.
Resumo:
Hydroperoxide lyases (HPLs) catalyze the cleavage of fatty acid hydroperoxides to aldehydes and oxoacids. These volatile aldehydes play a major role in forming the aroma of many plant fruits and flowers. In addition, they have antimicrobial activity in vitro and thus are thought to be involved in the plant defense response against pest and pathogen attack. An HPL activity present in potato leaves has been characterized and shown to cleave specifically 13-hydroperoxides of both linoleic and linolenic acids to yield hexanal and 3-hexenal, respectively, and 12-oxo-dodecenoic acid. A cDNA encoding this HPL has been isolated and used to monitor gene expression in healthy and mechanically damaged potato plants. HPL gene expression is subject to developmental control, being high in young leaves and attenuated in older ones, and it is induced weakly by wounding. HPL enzymatic activity, nevertheless, remains constant in leaves of different ages and also after wounding, suggesting that posttranscriptional mechanisms may regulate its activity levels. Antisense-mediated HPL depletion in transgenic potato plants has identified this enzyme as a major route of 13-fatty acid hydroperoxide degradation in the leaves. Although these transgenic plants have highly reduced levels of both hexanal and 3-hexenal, they show no phenotypic differences compared with wild-type ones, particularly in regard to the expression of wound-induced genes. However, aphids feeding on the HPL-depleted plants display approximately a two-fold increase in fecundity above those feeding on nontransformed plants, consistent with the hypothesis that HPL-derived products have a negative impact on aphid performance. Thus, HPL-catalyzed production of C6 aldehydes may be a key step of a built-in resistance mechanism of plants against some sucking insect pests.
Resumo:
The plant Mentzelia pumila (family Loasaceae) has leaves and stems densely covered with tiny hooked trichomes. The structures entrap and kill insects and therefore are most probably protective. But they are also maladaptive in that they incapacitate a coccinellid beetle (Hippodamia convergens) that preys upon an aphid enemy (Macrosiphum mentzeliae) of the plant. The adaptive benefit provided by the trichomes is evidently offset by a cost.
Resumo:
Buchnera aphidicola is an obligate, strictly vertically transmitted, bacterial symbiont of aphids. It supplies its host with essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. Several lineages of Buchnera show adaptation to their nutritional role in the form of plasmid-mediated amplification of key-genes involved in the biosynthesis of tryptophan (trpEG) and leucine (leuABCD). Phylogenetic analyses of these plasmid-encoded functions have thus far suggested the absence of horizontal plasmid exchange among lineages of Buchnera. Here, we describe three new Buchnera plasmids, obtained from species of the aphid host families Lachnidae and Pemphigidae. All three plasmids belong to the repA1 family of Buchnera plasmids, which is characterized by the presence of a repA1-replicon responsible for replication initiation. A comprehensive analysis of this family of plasmids unexpectedly revealed significantly incongruent phylogenies for different plasmid and chromosomally encoded loci. We infer from these incongruencies a case of horizontal plasmid transfer in Buchnera. This process may have been mediated by secondary endosymbionts, which occasionally undergo horizontal transmission in aphids.
Resumo:
Many bacteria live only within animal cells and infect hosts through cytoplasmic inheritance. These endosymbiotic lineages show distinctive population structure, with small population size and effectively no recombination. As a result, endosymbionts are expected to accumulate mildly deleterious mutations. If these constitute a substantial proportion of new mutations, endosymbionts will show (i) faster sequence evolution and (ii) a possible shift in base composition reflecting mutational bias. Analyses of 16S rDNA of five independently derived endosymbiont clades show, in every case, faster evolution in endosymbionts than in free-living relatives. For aphid endosymbionts (genus Buchnera), coding genes exhibit accelerated evolution and unusually low ratios of synonymous to nonsynonymous substitutions compared to ratios for the same genes for enterics. This concentration of the rate increase in nonsynonymous substitutions is expected under the hypothesis of increased fixation of deleterious mutations. Polypeptides for all Buchnera genes analyzed have accumulated amino acids with codon families rich in A+T, supporting the hypothesis that substitutions are deleterious in terms of polypeptide function. These observations are best explained as the result of Muller's ratchet within small asexual populations, combined with mutational bias. In light of this explanation, two observations reported earlier for Buchnera, the apparent loss of a repair gene and the overproduction of a chaperonin, may reflect compensatory evolution. An alternative hypothesis, involving selection on genomic base composition, is contradicted by the observation that the speedup is concentrated at nonsynonymous sites.