10 resultados para Feldstein-Horioka Puzzle.
em National Center for Biotechnology Information - NCBI
Resumo:
To test whether the structure of a protein is determined in a manner akin to the assembly of a jigsaw puzzle, up to 10 adjacent residues within the core of T4 lysozyme were replaced by methionine. Such variants are active and fold cooperatively with progressively reduced stability. The structure of a seven-methionine variant has been shown, crystallographically, to be similar to wild type and to maintain a well ordered core. The interaction between the core residues is, therefore, not strictly comparable with the precise spatial complementarity of the pieces of a jigsaw puzzle. Rather, a certain amount of give and take in forming the core structure is permitted. A simplified hydrophobic core sequence, imposed without genetic selection or computer-based design, is sufficient to retain native properties in a globular protein.
Resumo:
Planning a goal-directed sequence of behavior is a higher function of the human brain that relies on the integrity of prefrontal cortical areas. In the Tower of London test, a puzzle in which beads sliding on pegs must be moved to match a designated goal configuration, patients with lesioned prefrontal cortex show deficits in planning a goal-directed sequence of moves. We propose a neuronal network model of sequence planning that passes this test and, when lesioned, fails in a way that mimics prefrontal patients’ behavior. Our model comprises a descending planning system with hierarchically organized plan, operation, and gesture levels, and an ascending evaluative system that analyzes the problem and computes internal reward signals that index the correct/erroneous status of the plan. Multiple parallel pathways connecting the evaluative and planning systems amend the plan and adapt it to the current problem. The model illustrates how specialized hierarchically organized neuronal assemblies may collectively emulate central executive or supervisory functions of the human brain.
Resumo:
The small fourth chromosome of Drosophila melanogaster (3.5% of the genome) presents a puzzle. Cytological analysis suggests that the bulk of the fourth, including the portion that appears banded in the polytene chromosomes, is heterochromatic; the banded region includes blocks of middle repetitious DNA associated with heterochromatin protein 1 (HP1). However, genetic screens indicate 50–75 genes in this region, a density similar to that in other euchromatic portions of the genome. Using a P element containing an hsp70-white gene and a copy of hsp26 (marked with a fragment of plant DNA designated pt), we have identified domains that allow for full expression of the white marker (R domains), and others that induce a variegating phenotype (V domains). In the former case, the hsp26-pt gene shows an accessibility and heat-shock-inducible activity similar to that seen in euchromatin, whereas in the latter case, accessibility and inducible expression are reduced to levels typical of heterochromatin. Mapping by in situ hybridization and by hybridization of flanking DNA sequences to a collection of cosmid and bacterial artificial chromosome clones shows that the R domains (euchromatin-like) and V domains (heterochromatin-like) are interspersed. Examination of the effect of genetic modifiers on the variegating transgenes shows some differences among these domains. The results suggest that heterochromatic and euchromatic domains are interspersed and closely associated within this 1.2-megabase region of the genome.
Resumo:
The replication of many viral and subviral pathogens as well as the amplification of certain cellular genes proceeds via a rolling circle mechanism. For potato spindle tuber (PSTVd) and related viroids, the possible role of a circular (−)strand RNA as a template for synthesis of (+)strand progeny is unclear. Infected plants appear to contain only multimeric linear (−)strand RNAs, and attempts to initiate infection with multimeric (−)PSTVd RNAs generally have failed. To examine critically the infectivity of monomeric (−)strand viroid RNAs, we have developed a ribozyme-based expression system for the production of precisely full length (−)strand RNAs whose termini are capable of undergoing facile circularization in vitro. Mechanical inoculation of tomato seedlings with electrophoretically purified (−)PSTVd RNA led to a small fraction of plants becoming infected whereas parallel assays with an analogous tomato planta macho viroid (−)RNA resulted in a much larger fraction of infected plants. Ribozyme-mediated production of (−)PSTVd RNA in transgenic plants led to the appearance of monomeric circular (−)PSTVd RNA and large amounts of (+)PSTVd progeny. No monomeric circular (−)PSTVd RNA could be detected in naturally infected plants by using either ribonuclease protection or electrophoresis under partially denaturing conditions. Although not a component of the normal replicative pathway, precisely full length (−)PSTVd RNA appears to contain all of the structural and regulatory elements necessary for initiation of viroid replication.
Resumo:
This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Niño-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower δ18O values at numerous sites in the world’s tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century.
Resumo:
Understanding the mechanism of protein secondary structure formation is an essential part of the protein-folding puzzle. Here, we describe a simple statistical mechanical model for the formation of a β-hairpin, the minimal structural element of the antiparallel β-pleated sheet. The model accurately describes the thermodynamic and kinetic behavior of a 16-residue, β-hairpin-forming peptide, successfully explaining its two-state behavior and apparent negative activation energy for folding. The model classifies structures according to their backbone conformation, defined by 15 pairs of dihedral angles, and is further simplified by considering only the 120 structures with contiguous stretches of native pairs of backbone dihedral angles. This single sequence approximation is tested by comparison with a more complete model that includes the 215 possible conformations and 15 × 215 possible kinetic transitions. Finally, we use the model to predict the equilibrium unfolding curves and kinetics for several variants of the β-hairpin peptide.
Resumo:
Human color vision starts with the signals from three cone photoreceptor types, maximally sensitive to long (L-cone), middle (M-cone), and short (S-cone) wavelengths. Within the retina these signals combine in an antagonistic way to form red-green and blue-yellow spectral opponent pathways. In the classical model this antagonism is thought to arise from the convergence of cone type-specific excitatory and inhibitory inputs to retinal ganglion cells. The circuitry for spectral opponency is now being investigated using an in vitro preparation of the macaque monkey retina. Intracellular recording and staining has shown that blue-ON/yellow-OFF opponent responses arise from a distinctive bistratified ganglion cell type. Surprisingly, this cone opponency appears to arise by dual excitatory cone bipolar cell inputs: an ON bipolar cell that contacts only S-cones and an OFF bipolar cell that contacts L- and M-cones. Red-green spectral opponency has long been linked to the midget ganglion cells, but an underlying mechanism remains unclear. For example, receptive field mapping argues for segregation of L-and M-cone signals to the midget cell center and surround, but horizontal cell interneurons, believed to generate the inhibitory surround, lack opponency and cannot contribute selective L- or M-cone input to the midget cell surround. The solution to this color puzzle no doubt lies in the great diversity of cell types in the primate retina that still await discovery and analysis.
Resumo:
The hoatzin (Opisthocomus hoazin) lives in the humid lowlands of northern and central South America, often in riparian habitats. It is a slender bird approximately 65 cm in length, brownish with lighter streaks and buffy tips to the long tail feathers. The small head has a ragged, bristly crest of reddish-brown feathers, and the bare skin of the face is bright blue. It resembles a chachalaca (Ortalis, Cracidae) in size and shape, but its plumage and markings are similar to those of the smaller guira cuckoo (Guira guira). The hoatzin (pronounced Watson) has been a taxonomic puzzle since it was described in 1776. It usually has been viewed as related to the gallinaceous birds, but alliances to other groups have been suggested, including the cuckoos. We present DNA sequence evidence from the 12S and 16S rRNA mitochondrial genes, and from the nuclear gene that codes for the eye lens protein, alpha A-crystallin. The results indicate that the hoatzin is most closely related to the typical cuckoos and that the divergence occurred at or near the base of the cuculiform phylogenetic tree.