7 resultados para Federal Interagency Forum on Aging-Related Statistics (U.S.)
em National Center for Biotechnology Information - NCBI
Resumo:
During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in differentiated muscle fibers. We demonstrate that the IGF-I expression promotes an average increase of 15% in muscle mass and a 14% increase in strength in young adult mice, and remarkably, prevents aging-related muscle changes in old adult mice, resulting in a 27% increase in strength as compared with uninjected old muscles. Muscle mass and fiber type distributions were maintained at levels similar to those in young adults. We propose that these effects are primarily due to stimulation of muscle regeneration via the activation of satellite cells by IGF-I. This supports the hypothesis that the primary cause of aging-related impairment of muscle function is a cumulative failure to repair damage sustained during muscle utilization. Our results suggest that gene transfer of IGF-I into muscle could form the basis of a human gene therapy for preventing the loss of muscle function associated with aging and may be of benefit in diseases where the rate of damage to skeletal muscle is accelerated.
Resumo:
This paper considers the appropriate role for government in the support of scientific and technological progress in health care; the information the federal government needs to make well-informed decisions about its role; and the ways that federal policy toward research and development should respond to scientific advances, technology trends, and changes in the political and social environment. The principal justification for government support of research rests upon economic characteristics that lead private markets to provide inappropriate levels of research support or to supply inappropriate quantities of the products that result from research. The federal government has two basic tools for dealing with these problems: direct subsidies for research and strengthened property rights that can increase the revenues that companies receive for the products that result from research. In the coming years, the delivery system for health care will continue to undergo dramatic changes, new research opportunities will emerge at a rapid pace, and the pressure to limit discretionary federal spending will intensify. These forces make it increasingly important to improve the measurement of the costs and benefits of research and to recognize the tradeoffs among alternative policies for promoting innovation in health care.
Resumo:
Human aging is impacted severely by cardiovascular disease and significantly but less overtly by renal dysfunction. Advanced glycation endproducts (AGEs) have been linked to tissue damage in diabetes and aging, and the AGE inhibitor aminoguanidine (AG) has been shown to inhibit renal and vascular pathology in diabetic animals. In the present study, the effects of AG on aging-related renal and vascular changes and AGE accumulation were studied in nondiabetic female Sprague-Dawley (S-D) and Fischer 344 (F344) rats treated with AG (0.1% in drinking water) for 18 mo. Significant increases in the AGE content in aged cardiac (P < 0.05), aortic (P < 0.005), and renal (P < 0.05) tissues were prevented by AG treatment (P < 0.05 for each tissue). A marked age-linked vasodilatory impairment in response to acetylcholine and nitroglycerine was prevented by AG treatment (P < 0.005), as was an age-related cardiac hypertrophy evident in both strains (P < 0.05). While creatinine clearance was unaffected by aging in these studies, the AGE/ creatinine clearance ratio declined 3-fold in old rats vs. young rats (S-D, P < 0.05; F344, P < 0.01), while it declined significantly less in AG-treated old rats (P < 0.05). In S-D but not in F344 rats, a significant (P < 0.05) age-linked 24% nephron loss was completely prevented by AG treatment, and glomerular sclerosis was markedly suppressed (P < 0.01). Age-related albuminuria and proteinuria were markedly inhibited by AG in both strains (S-D, P < 0.01; F344, P < 0.01). These data suggest that early interference with AGE accumulation by AG treatment may impart significant protection against the progressive cardiovascular and renal decline afflicting the last decades of life.
Resumo:
In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.
Resumo:
Antioxidants may play an important role in preventing free radical damage associated with aging by interfering directly in the generation of radicals or by scavenging them. We investigated the effects of a high vitamin E and/or a high beta-carotene diet on aging of the anion transporter, band 3, in lymphocytes and brain. The band 3 proteins function as anion transporters, acid base regulators, C02 transporters, and structural proteins that provide a framework for membrane lipids and that link the plasma membrane to the cytoskeleton. Senescent cell antigen (SCA), which terminates the life of cells, is a degradation product of band 3. This study was conducted as a double-blind study in which eight groups of middle-aged or old mice received either high levels of beta-carotene and/or vitamin E or standard levels of these supplements in their diets. Anion transport kinetic assays were performed on isolated splenic lymphocytes. Immunoreactivity of an antibody that recognizes aging changes in old band 3 preceding generation of SCA was used to quantitate aged band 3 in brain tissue. Results indicate that vitamin E prevented the observed age-related decline in anion transport by lymphocytes and the generation of aged band 3 leading to SCA formation. beta-Carotene had no significant effect on the results of either assay. Since increased aged band 3 and decreased anion transport are initial steps in band 3 aging, which culminates in the generation of SCA and cellular removal, vitamin E prevents or delays aging of band 3-related proteins in lymphocytes and brain.