8 resultados para Feature sizes

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single recombinant expressing the Streptomyces coelicolor minimal whiE (spore pigment) polyketide synthase (PKS) is uniquely capable of generating a large array of well more than 30 polyketides, many of which, so far, are novel to this recombinant. The characterized polyketides represent a diverse set of molecules that differ in size (chain length) and shape (cyclization pattern). This combinatorial biosynthetic library is, by far, the largest and most complex of its kind described to date and indicates that the minimal whiE PKS does not independently control polyketide chain length nor dictate the first cyclization event. Rather, the minimal PKS enzyme complex must rely on the stabilizing effects of additional subunits (i.e., the cyclase whiE-ORFVI) to ensure that the chain reaches the full 24 carbons and cyclizes correctly. This dramatic loss of control implies that the growing polyketide chain does not remain enzyme bound, resulting in the spontaneous cyclization of the methyl terminus. Among the six characterized dodecaketides, four different first-ring cyclization regiochemistries are represented, including C7/C12, C8/C13, C10/C15, and C13/C15. The dodecaketide TW93h possesses a unique 2,4-dioxaadamantane ring system and represents a new structural class of polyketides with no related structures isolated from natural or engineered organisms, thus supporting the claim that engineered biosynthesis is capable of producing novel chemotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human visual system is able to effortlessly integrate local features to form our rich perception of patterns, despite the fact that visual information is discretely sampled by the retina and cortex. By using a novel perturbation technique, we show that the mechanisms by which features are integrated into coherent percepts are scale-invariant and nonlinear (phase and contrast polarity independent). They appear to operate by assigning position labels or “place tags” to each feature. Specifically, in the first series of experiments, we show that the positional tolerance of these place tags in foveal, and peripheral vision is about half the separation of the features, suggesting that the neural mechanisms that bind features into forms are quite robust to topographical jitter. In the second series of experiment, we asked how many stimulus samples are required for pattern identification by human and ideal observers. In human foveal vision, only about half the features are needed for reliable pattern interpolation. In this regard, human vision is quite efficient (ratio of ideal to real ≈ 0.75). Peripheral vision, on the other hand is rather inefficient, requiring more features, suggesting that the stimulus may be relatively underrepresented at the stage of feature integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ectodomain of the Ebola virus Gp2 glycoprotein was solubilized with a trimeric, isoleucine zipper derived from GCN4 (pIIGCN4) in place of the hydrophobic fusion peptide at the N terminus. This chimeric molecule forms a trimeric, highly α-helical, and very thermostable molecule, as determined by chemical crosslinking and circular dichroism. Electron microscopy indicates that Gp2 folds into a rod-like structure like influenza HA2 and HIV-1 gp41, providing further evidence that viral fusion proteins from diverse families such as Orthomyxoviridae (Influenza), Retroviridae (HIV-1), and Filoviridae (Ebola) share common structural features, and suggesting a common membrane fusion mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational maps are of central importance to a neuronal representation of the outside world. In a map, neighboring neurons respond to similar sensory features. A well studied example is the computational map of interaural time differences (ITDs), which is essential to sound localization in a variety of species and allows resolution of ITDs of the order of 10 μs. Nevertheless, it is unclear how such an orderly representation of temporal features arises. We address this problem by modeling the ontogenetic development of an ITD map in the laminar nucleus of the barn owl. We show how the owl's ITD map can emerge from a combined action of homosynaptic spike-based Hebbian learning and its propagation along the presynaptic axon. In spike-based Hebbian learning, synaptic strengths are modified according to the timing of pre- and postsynaptic action potentials. In unspecific axonal learning, a synapse's modification gives rise to a factor that propagates along the presynaptic axon and affects the properties of synapses at neighboring neurons. Our results indicate that both Hebbian learning and its presynaptic propagation are necessary for map formation in the laminar nucleus, but the latter can be orders of magnitude weaker than the former. We argue that the algorithm is important for the formation of computational maps, when, in particular, time plays a key role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize a class of spatio-temporal illusions with two complementary properties. Firstly, if a vernier stimulus is flashed for a short time on a monitor and is followed immediately by a grating, the latter can express features of the vernier, such as its offset, its orientation, or its motion (feature inheritance). Yet the vernier stimulus itself remains perceptually invisible. Secondly, the vernier can be rendered visible by presenting gratings with a larger number of elements (shine-through). Under these conditions, subjects perceive two independent “objects” each carrying their own features. Transition between these two domains can be effected by subtle changes in the spatio-temporal layout of the grating. This should allow psychophysicists and electrophysiologists to investigate feature binding in a precise and quantitative manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maximum likelihood estimator based on the coalescent for unequal migration rates and different subpopulation sizes is developed. The method uses a Markov chain Monte Carlo approach to investigate possible genealogies with branch lengths and with migration events. Properties of the new method are shown by using simulated data from a four-population n-island model and a source–sink population model. Our estimation method as coded in migrate is tested against genetree; both programs deliver a very similar likelihood surface. The algorithm converges to the estimates fairly quickly, even when the Markov chain is started from unfavorable parameters. The method was used to estimate gene flow in the Nile valley by using mtDNA data from three human populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitin-activating enzyme, E1, is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 exists as two isoforms in human cells which are separable by electrophoresis. These isoforms migrate with apparent molecular sizes of 110 kDa and 117 kDa in SDS/polyacrylamide gels. Immunoprecipitation of E1 from lysates of HeLa cells metabolically labeled with [32P]phosphate indicated the presence of a phosphorylated form of E1 which migrates at 117 kDa. Phospho amino acid analysis identified serine as the phosphorylated residue in E1. Phosphorylated E1 was also detected in normal and transformed cells from another human cell line. Phosphatase-catalyzed dephosphorylation of E1 in vitro did not eliminate the 117-kDa E1 isoform detected by Coomassie staining after SDS/polyacrylamide gel electrophoresis, thereby demonstrating that phosphorylation is not the sole structural feature differentiating the isoforms of E1. These observations suggest new hypotheses concerning mechanisms of metabolic regulation of the ubiquitin conjugation pathway.