11 resultados para Farnesyltransferase

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein prenyltransferases catalyze the covalent attachment of isoprenoid lipids (farnesyl or geranylgeranyl) to a cysteine near the C terminus of their substrates. This study explored the specificity determinants for interactions between the farnesyltransferase of Saccharomyces cerevisiae and its protein substrates. A series of substitutions at amino acid 149 of the farnesyltransferase β-subunit were tested in combination with a series of substitutions at the C-terminal amino acid of CaaX protein substrates Ras2p and a-factor. Efficient prenylation was observed when oppositely charged amino acids were present at amino acid 149 of the yeast farnesyltransferase β-subunit and the C-terminal amino acid of the CaaX protein substrate, but not when like charges were present at these positions. This evidence for electrostatic interaction between amino acid 149 and the C-terminal amino acid of CaaX protein substrates leads to the prediction that the C-terminal amino acid of the protein substrate binds near amino acid 149 of the yeast farnesyltransferase β-subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farnesyltransferase inhibitors (FTIs) exhibit the remarkable ability to inhibit transformed phenotypes of a variety of human cancer cell lines and to block the growth of cancer cells in a number of animal model systems. In this paper, we report that the addition of FTI to v-K-ras- transformed NRK cells (KNRK) results in dramatic morphological changes. Within 24 h after the addition of FTI, the round morphology of KNRK cells was changed to an elongated (flattened and spread out) morphology resembling those of untransformed NRK cells. No morphological effects were seen when similar concentrations of FTI were added to NRK cells. Phalloidin staining showed that FTI treatment did not restore the disrupted actin cytoskeleton in KNRK cells. In contrast, FTI addition resulted in the appearance of extensive microtubule networks in KNRK cells. The addition of a low concentration (1.2 nM) of vincristine or vinblastine, agents that interfere with microtubule dynamics, blocked the FTI-induced morphological changes in KNRK cells. In contrast, cytochalasin B, which interferes with actin polymerization, did not block the morphological changes. The FTI-induced morphological changes were associated with a decrease in the percentage of cells in S-phase, and the addition of 1.2 nM vincristine did not have additional effects on cell cycle progression. A higher concentration (12 nM) of vincristine caused synergistic effect with FTI to enrich dramatically KNRK cells in G2/M phase. These results suggest that FTI affects cell morphology and that microtubule dynamics are involved in these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farnesyltransferase inhibitors (FTIs) represent a new class of anticancer drugs that show promise in blocking the growth of tumors. Here, we report that FTIs are capable of inducing apoptosis of transformed but not untransformed cells. Treatment of v-K-ras-transformed normal rat kidney (KNRK) cells with FTIs leads to the induction of apoptotic cell morphology, chromatin condensation and DNA fragmentation. In addition, fluorescence-activated cell sorter analysis of FTI-treated KNRK cells shows a sub-G1 apoptotic peak (chromosome content of <2 N). This FTI-induced apoptosis is evident only when the cells are grown in low serum conditions (0.1% fetal calf serum) and is observed selectively with transformed KNRK cells and not with untransformed NRK cells. Further analysis of the mechanism underlying this apoptosis has shown that FTI treatment of KNRK cells results in the activation of caspase 3 but not caspase 1. Moreover, the addition of Z-DEVD-fmk, an agent that interferes with caspase 3 activity, can inhibit FTI-induced apoptosis in a dose-dependent manner. Introduction of the CASP-3 gene into MCF7 cells, which lack caspase 3 activity, results in a significant increase of FTI-induced apoptosis. Furthermore, FTI induces the release of cytochrome c into the cytosol. This release is an important feature of caspase 3-mediated apoptosis. These results suggest that FTIs induce apoptosis through the release of cytochrome c from the mitochondria resulting in caspase 3 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzodiazepine (BZA)-5B, a CAAX farnesyl-transferase inhibitor, was previously shown to block the farnesylation of H-Ras and to reverse the transformed morphology of Rat1 cells expressing oncogenic H-RasV12. Non-transformed Rat1 cells were not affected by BZA-5B, suggesting that they produce a form of Ras whose prenylation is not blocked by this compound. The likely candidate is K-RasB, which differs from H-Ras primarily in the terminal 24 amino acids. In the current study we examined the effect of BZA-5B on the prenylation of a chimeric oncogenic Ras protein designated H/K-RasBV12, consisting of the first 164 amino acids of H-RasV12 followed by the last 24 amino acids of K-RasB. BZA-5B failed to block the prenylation of this chimera and was thus unable to reverse the transformed morphology of Rat1 cells in which it was expressed. Another potent inhibitor of H-Ras farnesylation, L-739,749, also failed to block prenylation of H/K-RasBV12. Similar results were obtained in transfected cells expressing a widely used version of K-RasBV12 containing a 10-amino acid extension at its NH2 terminus. Neither BZA-5B nor L-739,749 reversed the transformed morphology of cells expressing H/K-RasBV12. The resistance of K-RasB to farnesyltransferase inhibition provides a likely explanation for the resistance of nontransformed cells to the growth inhibitory effects of BZA-5B and L-739,749.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein farnesyltransferase catalyzes the alkylation of cysteine in C-terminal CaaX sequences of a variety of proteins, including Ras, nuclear lamins, large G proteins, and phosphodiesterases, by farnesyl diphosphate (FPP). These modifications enhance the ability of the proteins to associate with membranes and are essential for their respective functions. The enzyme-catalyzed reaction was studied by using a series of substrate analogs for FPP to distinguish between electrophilic and nucleophilic mechanisms for prenyl transfer. FPP analogs containing hydrogen, fluoromethyl, and trifluoromethyl substituents in place of the methyl at carbon 3 were evaluated as alternative substrates for alkylation of the sulfhydryl moiety in the peptide dansyl-GCVIA. The analogs were alternative substrates for the prenylation reaction and were competitive inhibitors against FPP. A comparison of kcat for FPP and the analogs with ksolv, the rate constants for solvolysis of related p-methoxybenzenesulfonate derivatives, indicated that protein prenylation occurred by an electrophilic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attachment of Ras protein to the membrane, which requires farnesylation at its C terminus, is essential for its biological activity. A promising pharmacological approach of antagonizing oncogenic Ras activity is to develop inhibitors of farnesyltransferase. We use Caenorhabditis elegans vulval differentiation, which is controlled by a Ras-mediated signal transduction pathway, as a model system to test previously identified farnesyltransferase inhibitors. We show here that two farnesyltransferase inhibitors, manumycin and gliotoxin, suppress the Multivulva phenotype resulting from an activated let-60 ras mutation, but not the Multivulva phenotype resulting from mutations in the lin-1 gene or the lin-15 gene, which act downstream and upstream of let-60 ras, respectively, in the signaling pathway. These results are consistent with the idea that the suppression of the Multivulva phenotype of let-60 ras by the two inhibitors is specific for Ras protein and that the mutant Ras protein might be more sensitive than wild-type Ras to the farnesyltransferase inhibitors. This work suggests that C. elegans vulval development could be a simple and effective in vivo system for evaluation of farnesyltransferase inhibitors against Ras-activated tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathepsin B (CTSB) is overexpressed in tumors of the lung, prostate, colon, breast, and stomach. However, evidence of primary genomic alterations in the CTSB gene during tumor initiation or progression has been lacking. We have found a novel amplicon at 8p22–23 that results in CTSB overexpression in esophageal adenocarcinoma. Amplified genomic NotI–HinfI fragments were identified by two-dimensional DNA electrophoresis. Two amplified fragments (D4 and D5) were cloned and yielded unique sequences. Using bacterial artificial chromosome clones containing either D4 or D5, fluorescent in situ hybridization defined a single region of amplification involving chromosome bands 8p22–23. We investigated the candidate cancer-related gene CTSB, and potential coamplified genes from this region including farnesyl-diphosphate farnesyltransferase (FDFT1), arylamine N-acetyltransferase (NAT-1), lipoprotein lipase (LPL), and an uncharacterized expressed sequence tag (D8S503). Southern blot analysis of 66 esophageal adenocarcinomas demonstrated only CTSB and FDFT1 were consistently amplified in eight (12.1%) of the tumors. Neither NAT-1 nor LPL were amplified. Northern blot analysis showed overexpression of CTSB and FDFT1 mRNA in all six of the amplified esophageal adenocarcinomas analyzed. CTSB mRNA overexpression also was present in two of six nonamplified tumors analyzed. However, FDFT1 mRNA overexpression without amplification was not observed. Western blot analysis confirmed CTSB protein overexpression in tumor specimens with CTSB mRNA overexpression compared with either normal controls or tumors without mRNA overexpression. Abundant extracellular expression of CTSB protein was found in 29 of 40 (72.5%) of esophageal adenocarcinoma specimens by using immunohistochemical analysis. The finding of an amplicon at 8p22–23 resulting in CTSB gene amplification and overexpression supports an important role for CTSB in esophageal adenocarcinoma and possibly in other tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isoprenoid pathway in FRTL-5 thyroid cells was found to be deeply altered on transformation with v-K-ras. A dramatic overall reduction of protein prenylation was found in v-K-ras-transformed cells in comparison with the parent FRTL-5 cells, as shown by labeling cells with [3H]mevalonic acid. This phenomenon was accompanied by a relative increase of p21ras farnesylation and by a decrease of the ratio between the amounts of geranylgeraniol and farnesol bound to prenylated proteins. Analysis of protein prenylation in FRTL-5 cells transformed by a temperature-sensitive mutant of the v-K-ras oncogene indicated that these variations represent an early and specific marker of active K-ras. Conversely, FRTL-5 cells transformed with Harvey-ras showed a pattern of [3H]-mevalonate (MVA)-labeled proteins similar to that of nontransformed cells. The K-ras oncogene activation also resulted in an overall decrease of [3H]-MVA incorporation into isopentenyl-tRNA together with an increase of unprocessed [3H]-MVA and no alteration in [3H]-MVA uptake. The effects of v-K-ras on protein prenylation could be mimicked in FRTL-5 cells by lowering the concentration of exogenous [3H]-MVA whereas increasing the [3H]-MVA concentration did not revert the alterations observed in transformed cells. Accordingly, v-K-ras expression was found to: (i) down-regulate mevalonate kinase; (ii) induce farnesyl-pyrophosphate synthase expression; and (iii) augment protein farnesyltransferase but not protein geranylgeranyl-transferase-I activity. Among these events, mevalonate kinase down-regulation appeared to be related strictly to differential protein prenylation. This study represents an example of how expression of the v-K-ras oncogene, through multiple interferences with the isoprenoid metabolic pathway, may result in the preferential farnesylation of the ras oncogene product p21ras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of neoplastic transformation on the response to genotoxic stress is of significant clinical interest. In this study, we offer genetic evidence that the apoptotic response of neoplastically transformed cells to DNA damage requires RhoB, a member of the Rho family of actin cytoskeletal regulators. Targeted deletion of the rhoB gene did not affect cell cycle arrest in either normal or transformed cells after exposure to doxorubicin or gamma irradiation, but rendered transformed cells resistant to apoptosis. This effect was specific insofar as rhoB deletion did not affect apoptotic susceptibility to agents that do not damage DNA. However, rhoB deletion also affected apoptotic susceptibility to Taxol, an agent that disrupts microtubule dynamics. We have demonstrated that RhoB alteration mediates the proapoptotic and antineoplastic effects of farnesyltransferase inhibitors, and we show here that RhoB alteration is also crucial for farnesyltransferase inhibitors to sensitize neoplastic cells to DNA damage-induced cell death. We found RhoB to be an important determinant of long-term survival in vitro and tumor response in vivo after gamma irradiation. Our findings identify a pivotal role for RhoB in the apoptotic response of neoplastic cells to DNA damage at a novel regulatory point that may involve the actin cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells.