40 resultados para Failure to Thrive
em National Center for Biotechnology Information - NCBI
Resumo:
Objective: To evaluate the effectiveness of a health visitor led intervention for failure to thrive in children under 2 years old.
Resumo:
To understand how virulent mycobacteria subvert host immunity and establish disease, we examined the differential response of mice to infection with various human outbreak Mycobacterium tuberculosis clinical isolates. One clinical isolate, HN878, was found to be hypervirulent, as demonstrated by unusually early death of infected immune-competent mice, compared with infection with other clinical isolates. The differential effect on survival required lymphocyte function because severe combined immunodeficiency (SCID) mice infected with HN878 or other clinical isolates all died at the same rate. The hypervirulence of HN878 was associated with failure to induce M. tuberculosis-specific proliferation and IFN-γ production by spleen and lymph node cells from infected mice. In addition, 2- to 4-fold lower levels of tumor necrosis factor-α (TNF-α), IL-6, IL-12, and IFN-γ mRNAs were observed in lungs of HN878-infected mice. IL-10, IL-4, and IL-5 mRNA levels were not significantly elevated in lungs of HN878 infected mice. In contrast, IFN-α mRNA levels were significantly higher in lungs of these mice. To further investigate the role of Type 1 IFNs, mice infected with HN878 were treated intranasally with purified IFN-α/β. The treatment resulted in increased lung bacillary loads and even further reduced survival. These results suggest that the hypervirulence of HN878 may be due to failure of this strain to stimulate Th1 type immunity. In addition, the lack of development of Th1 immunity in response to HN878 appears to be associated with increased induction of Type 1 IFNs.
Resumo:
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
Resumo:
Copper plays a fundamental role in the biochemistry of all aerobic organisms. The delivery of this metal to specific intracellular targets is mediated by metallochaperones. To elucidate the role of the metallochaperone Atox1, we analyzed mice with a disruption of the Atox1 locus. Atox1−/− mice failed to thrive immediately after birth, with 45% of pups dying before weaning. Surviving animals exhibited growth failure, skin laxity, hypopigmentation, and seizures because of perinatal copper deficiency. Maternal Atox1 deficiency markedly increased the severity of Atox1−/− phenotype, resulting in increased perinatal mortality as well as severe growth retardation and congenital malformations among surviving Atox1−/− progeny. Furthermore, Atox1-deficient cells accumulated high levels of intracellular copper, and metabolic studies indicated that this defect was because of impaired cellular copper efflux. Taken together, these data reveal a direct role for Atox1 in trafficking of intracellular copper to the secretory pathway of mammalian cells and demonstrate that this metallochaperone plays a critical role in perinatal copper homeostasis.
Resumo:
We have shown elsewhere that acidification is an early event in apoptosis, preceding DNA cleavage. Cells expressing the most common mutation (delF508) of the cystic fibrosis transmembrane regulator (CFTR) exhibit a higher resting intracellular pH and are unable to secrete chloride and bicarbonate in response to cAMP. We hypothesized that defective acidification in cells expressing delF508 CFTR would interfere with the acidification that accompanies apoptosis, which in turn, would prevent endonuclease activation and cleavage of DNA. We therefore determined whether the function of the CFTR would affect the process of apoptosis in mouse mammary epithelial C127 cells stably transfected with the wild-type CFTR (C127/wt) or the delF508 mutation of the CFTR (C127/508). C127 cells possessed an acid endonuclease capable of DNA degradation at low pH. Sixteen hours after treatment with cycloheximide, C127/wt cells underwent cytoplasmic acidification. In contrast, C127/508 cells failed to demonstrate acidification. Furthermore, the C127/508 cells did not show nuclear condensation or DNA fragmentation detected by in situ nick-end labeling after treatment with cycloheximide or etoposide, in contrast to the characteristic features of apoptosis demonstrated by the C127/wt cells. Measurement of cell viability indicated a preservation of cell viability in C127/508 cells but not in C127/wt cells. That this resistance to the induction of apoptosis depended upon the loss of CFTR activity is shown by the finding that inhibition of the CFTR with diphenylamine carboxylate in C127/wt cells conferred similar protection. These findings suggest a role for the CFTR in acidification during the initiation of apoptosis in epithelial cells and imply that a failure to undergo programmed cell death could contribute to the pathogenesis of cystic fibrosis.
Resumo:
Human fibroblasts whose lifespan in culture has been extended by expression of a viral oncogene eventually undergo a growth crisis marked by failure to proliferate. It has been proposed that telomere shortening in these cells is the property that limits their proliferation. Here we report that ectopic expression of the wild-type reverse transcriptase protein (hTERT) of human telomerase averts crisis, at the same time reducing the frequency of dicentric and abnormal chromosomes. Surprisingly, as the resulting immortalized cells containing active telomerase continue to proliferate, their telomeres continue to shorten to mean lengths below those in control cells that enter crisis. These results provide evidence for a protective function of human telomerase that allows cell proliferation without requiring net lengthening of telomeres.
Resumo:
The SH2 domain-containing tyrosine phosphatase Shp2 plays a pivotal role during the gastrulation of vertebrate embryos. However, because of the complex phenotype observed in mouse mutant embryos, the precise role of Shp2 during development is unclear. To define the specific functions of this phosphatase, Shp2 homozygous mutant embryonic stem cells bearing the Rosa-26 LacZ transgene were isolated and used to perform a chimeric analysis. Here, we show that Shp2 mutant cells amass in the tail bud of embryonic day 10.5 chimeric mouse embryos and that this accumulation begins at the onset of gastrulation. At this early stage, Shp2 mutant cells collect in the primitive streak of the epiblast and thus show deficiencies in their contribution to the mesoderm lineage. In high-contribution chimeras, we show that overaccumulation of Shp2 mutant cells at the posterior end of the embryo results in two abnormal phenotypes: spina bifida and secondary neural tubes. Consistent with a failure to undergo morphogenic movements at gastrulation, Shp2 is required for embryo fibroblast cells to mount a positive chemotactic response to acidic fibroblast growth factor in vitro. Our results demonstrate that Shp2 is required at the initial steps of gastrulation, as nascent mesodermal cells form and migrate away from the primitive streak. The aberrant behavior of Shp2 mutant cells at gastrulation may result from their inability to properly respond to signals initiated by fibroblast growth factors.
Resumo:
Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensitive to the mutagenic effects of temozolomide. Experiments using Msh2-deficient cells in vitro suggest that an element of this effect is attributable to increased clonogenicity. Indeed, we show that Msh2 plays a role in the in vivo initiation of apoptosis after treatment with temozolomide, N-methyl-N′-nitro-N-nitrosoguanidine, and cisplatin. This was not influenced by the in vivo depletion of O6-alkylguanine-DNA-alkyltransferase after administration of O6-benzylguanine . By analyzing mice mutant for both Msh2 and p53, we found that the Msh2-dependent apoptotic response was primarily mediated through a p53-dependent pathway. Msh2 also was required to signal delayed p53-independent death. Taken together, these studies characterize an in vivo Msh2-dependent apoptotic response to methylating agents and raise the possibility that Msh2 deficiency may predispose to malignancy not only through failed repair of mismatch DNA lesions but also through the failure to engage apoptosis.
Resumo:
The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.
Resumo:
The neuropeptide galanin is predominantly expressed by the lactotrophs (the prolactin secreting cell type) in the rodent anterior pituitary and in the median eminence and paraventricular nucleus of the hypothalamus. Prolactin and galanin colocalize in the same secretory granule, the expression of both proteins is extremely sensitive to the estrogen status of the animal. The administration of estradiol-17β induces pituitary hyperplasia followed by adenoma formation and causes a 3,000-fold increase in the galanin mRNA content of the lactotroph. To further study the role of galanin in prolactin release and lactotroph growth we now report the generation of mice carrying a loss-of-function mutation of the endogenous galanin gene. There is no evidence of embryonic lethality and the mutant mice grow normally. The specific endocrine abnormalities identified to date, relate to the expression of prolactin. Pituitary prolactin message levels and protein content of adult female mutant mice are reduced by 30–40% compared with wild-type controls. Mutant females fail to lactate and pups die of starvation/dehydration unless fostered onto wild-type mothers. Prolactin secretion in mutant females is markedly reduced at 7 days postpartum compared with wild-type controls with an associated failure in mammary gland maturation. There is an almost complete abrogation of the proliferative response of the lactotroph to high doses of estrogen, with a failure to up-regulate prolactin release, STAT5 expression or to increase pituitary cell number. These data further support the hypothesis that galanin acts as a paracrine regulator of prolactin expression and as a growth factor to the lactotroph.
Resumo:
SMAD2 is a member of the transforming growth factor β and activin-signaling pathway. To examine the role of Smad2 in postgastrulation development, we independently generated mice with a null mutation in this gene. Smad2-deficient embryos die around day 7.5 of gestation because of failure of gastrulation and failure to establish an anterior–posterior (A-P) axis. Expression of the homeobox gene Hex (the earliest known marker of the A-P polarity and the prospective head organizer) was found to be missing in Smad2-deficient embryos. Homozygous mutant embryos and embryonic stem cells formed mesoderm derivatives revealing that mesoderm induction is SMAD2 independent. In the presence of wild-type extraembryonic tissues, Smad2-deficient embryos developed beyond 7.5 and up to 10.5 days postcoitum, demonstrating a requirement for SMAD2 in extraembryonic tissues for the generation of an A-P axis and gastrulation. The rescued postgastrulation embryos showed malformation of head structures, abnormal embryo turning, and cyclopia. Our results show that Smad2 expression is required at several stages during embryogenesis.
Resumo:
During activation T cells are thought to change their patterns of gene expression dramatically. To find out whether this is true for T cells activated in animals, the patterns of genes expressed in resting T cells and T cells 8 and 48 hr after activation were examined by using Affymetrix gene arrays. Gene arrays gave accurate comparisons of gene expression in the different cell types because the expression of genes known to vary during activation changed as expected. Of the approximately 6,300 genes assessed by the arrays, about one-third were expressed to appreciable extents in any of the T cells tested. Thus, resting T cells express a surprisingly large diversity of genes. The patterns of gene expression changed considerably within 8 hr of T cell activation but returned to a disposition more like that of resting T cells within 48 hr of exposure to antigen. Not unexpectedly, the activated T cells expressed genes associated with cell division at higher levels than resting T cells. The resting T cells expressed a number of cytokine receptor genes and some genes thought to suppress cell division, suggesting that the state of resting T cells is not a passive failure to respond to extant external stimuli.
Resumo:
Whether phytophagous insects can speciate in sympatry when they shift and adapt to new host plants is a controversial question. One essential requirement for sympatric speciation is that disruptive selection outweighs gene flow between insect populations using different host plants. Empirical support for host-related selection (i.e., fitness trade-offs) is scant, however. Here, we test for host-dependent selection acting on apple (Malus pumila)- and hawthorn (Crataegus spp.)-infesting races of Rhagoletis pomonella (Diptera: Tephritidae). In particular, we examine whether the earlier fruiting phenology of apple trees favors pupae in deeper states of diapause (or with slower metabolisms/development rates) in the apple fly race. By experimentally lengthening the time period preceding winter, we exposed hawthorn race pupae to environmental conditions typically faced by apple flies. This exposure induced a significant genetic response at six allozyme loci in surviving hawthorn fly adults toward allele frequencies found in the apple race. The sensitivity of hawthorn fly pupae to extended periods of warm weather therefore selects against hawthorn flies that infest apples and helps to maintain the genetic integrity of the apple race by counteracting gene flow from sympatric hawthorn populations. Our findings confirm that postzygotic reproductive isolation can evolve as a pleiotropic consequence of host-associated adaptation, a central tenet of nonallopatric speciation. They also suggest that one reason for the paucity of reported fitness trade-offs is a failure to consider adequately costs associated with coordinating an insect’s life cycle with the phenology of its host plant.
Resumo:
Aldosterone-dependent epithelial sodium transport in the distal nephron is mediated by the absorption of sodium through the highly selective, amiloride-sensitive epithelial sodium channel (ENaC) made of three homologous subunits (α, β, and γ). In human, autosomal recessive mutations of α, β, or γENaC subunits cause pseudohypoaldosteronism type 1 (PHA-1), a renal salt-wasting syndrome characterized by severe hypovolemia, high plasma aldosterone, hyponatremia, life-threatening hyperkaliemia, and metabolic acidosis. In the mouse, inactivation of αENaC results in failure to clear fetal lung liquid at birth and in early neonatal death, preventing the observation of a PHA-1 renal phenotype. Transgenic expression of αENaC driven by a cytomegalovirus promoter in αENaC(−/−) knockout mice [αENaC(−/−)Tg] rescued the perinatal lethal pulmonary phenotype and partially restored Na+ transport in renal, colonic, and pulmonary epithelia. At days 5–9, however, αENaC(−/−)Tg mice showed clinical features of severe PHA-1 with metabolic acidosis, urinary salt-wasting, growth retardation, and 50% mortality. Adult αENaC(−/−)Tg survivors exhibited a compensated PHA-1 with normal acid/base and electrolyte values but 6-fold elevation of plasma aldosterone compared with wild-type littermate controls. We conclude that partial restoration of ENaC-mediated Na+ absorption in this transgenic mouse results in a mouse model for PHA-1.