23 resultados para FREQUENCY-RESPONSE MEASUREMENT
em National Center for Biotechnology Information - NCBI
Resumo:
Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2 responsiveness in individual long-lived species cannot be accurately determined from field studies or by controlled-environment experiments. However, the required long-term data sets can be obtained from continuous records of buried leaves from living trees in wetland ecosystems. Fine-resolution analysis of the lifetime leaf record of an individual birch (Betula pendula) indicates a gradual reduction of stomatal frequency as a phenotypic acclimation to CO2 increase. During the past four decades, CO2 increments of 1 part per million by volume resulted in a stomatal density decline of approximately 0.6%. It may be hypothesized that this plastic stomatal frequency response of deciduous tree species has evolved in conjunction with the overall Cenozoic reduction of atmospheric CO2 concentrations.
Resumo:
Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensitive to the mutagenic effects of temozolomide. Experiments using Msh2-deficient cells in vitro suggest that an element of this effect is attributable to increased clonogenicity. Indeed, we show that Msh2 plays a role in the in vivo initiation of apoptosis after treatment with temozolomide, N-methyl-N′-nitro-N-nitrosoguanidine, and cisplatin. This was not influenced by the in vivo depletion of O6-alkylguanine-DNA-alkyltransferase after administration of O6-benzylguanine . By analyzing mice mutant for both Msh2 and p53, we found that the Msh2-dependent apoptotic response was primarily mediated through a p53-dependent pathway. Msh2 also was required to signal delayed p53-independent death. Taken together, these studies characterize an in vivo Msh2-dependent apoptotic response to methylating agents and raise the possibility that Msh2 deficiency may predispose to malignancy not only through failed repair of mismatch DNA lesions but also through the failure to engage apoptosis.
Resumo:
Recent data have identified leptin as an afferent signal in a negative-feedback loop regulating the mass of the adipose tissue. High leptin levels are observed in obese humans and rodents, suggesting that, in some cases, obesity is the result of leptin insensitivity. This hypothesis was tested by comparing the response to peripherally and centrally administered leptin among lean and three obese strains of mice: diet-induced obese AKR/J, New Zealand Obese (NZO), and Ay. Subcutaneous leptin infusion to lean mice resulted in a dose-dependent loss of body weight at physiologic plasma levels. Chronic infusions of leptin intracerebroventricularly (i.c.v.) at doses of 3 ng/hr or greater resulted in complete depletion of visible adipose tissue, which was maintained throughout 30 days of continuous i.c.v. infusion. Direct measurement of energy balance indicated that leptin treatment did not increase total energy expenditure but prevented the decrease that follows reduced food intake. Diet-induced obese mice lost weight in response to peripheral leptin but were less sensitive than lean mice. NZO mice were unresponsive to peripheral leptin but were responsive to i.c.v. leptin. Ay mice did not respond to subcutaneous leptin and were 1/100 as sensitive to i.c.v. leptin. The decreased response to leptin in diet-induced obese, NZO, and Ay mice suggests that obesity in these strains is the result of leptin resistance. In NZO mice, leptin resistance may be the result of decreased transport of leptin into the cerebrospinal fluid, whereas in Ay mice, leptin resistance probably results from defects downstream of the leptin receptor in the hypothalamus.
Resumo:
An HLA allele-specific cytotoxic T lymphocyte response is thought to influence the rate of disease progression in HIV-1-infected individuals. In a prior study of 139 HIV-1-infected homosexual men, we identified HLA class I alleles and observed an association of specific alleles with different relative hazards for progression to AIDS. Seeking an explanation for this association, we searched HIV-1 protein sequences to determine the number of peptides matching motifs defined by combinations of specific amino acids reported to bind 16 class I alleles. Analyzing complete sequences of 12 clade B HIV isolates, we determined the number of allele motifs that were conserved (occurring in all 12 isolates) and nonconserved (occurring in only one isolate), as well as the average number of allele motifs per isolate. We found significant correlations with an allele’s association with disease progression for counts of conserved motifs in gag (R = 0.73; P = 0.002), pol (R = 0.58, P = 0.024), gp120 (R = 0.78, P = 0.00056), and total viral protein sequences (R = 0.67, P = 0.0058) and also for counts of nonconserved motifs in gag (R = 0.62, P = 0.013), pol (R = 0.74, P = 0.0017), gp41 (R = 0.52, P = 0.046), and total viral protein (R = 0.71, P = 0.0033). We also found significant correlations for the average number of motifs per isolate for gag, pol, gp120, and total viral protein. This study provides a plausible functional explanation for the observed association of different HLA alleles with variable rates of disease progression.
Resumo:
3.L2 T cell receptor transgenic T cells are activated by the 64–76 peptide of the mouse hemoglobin d β chain [Hb(64–76)], and their response is antagonized by the position 72 alanine substitution of this peptide (A72). To test the effect of this altered peptide ligand (APL) on 3.L2 T cell function in vivo, a transgene expressing A72 in major histocompatibility complex II positive cells (A72tg) has been introduced into mice. We demonstrate that 3.L2 T cells, when transferred to A72tg+ mice show a dramatically reduced proliferative response to Hb(64–76). Identical decreased responses were observed using T cells that developed in either A72tg+ or A72tg− hosts. This affect was not attributable to diminished precursor frequency, anergy, or competition for binding to I-Ek molecules. These results unequivocally demonstrate in vivo antagonism by an endogenous APL and characterize a class of self-peptides that, although inefficient in causing deletion in the thymus, effectively modulate T cell responses in the periphery.
Resumo:
To enhance their mechanical sensitivity and frequency selectivity, hair cells amplify the mechanical stimuli to which they respond. Although cell-body contractions of outer hair cells are thought to mediate the active process in the mammalian cochlea, vertebrates without outer hair cells display highly sensitive, sharply tuned hearing and spontaneous otoacoustic emissions. In these animals the amplifier must reside elsewhere. We report physiological evidence that amplification can stem from active movement of the hair bundle, the hair cell’s mechanosensitive organelle. We performed experiments on hair cells from the sacculus of the bullfrog. Using a two-compartment recording chamber that permits exposure of the hair cell’s apical and basolateral surfaces to different solutions, we examined active hair-bundle motion in circumstances similar to those in vivo. When the apical surface was bathed in artificial endolymph, many hair bundles exhibited spontaneous oscillations of amplitudes as great as 50 nm and frequencies in the range 5 to 40 Hz. We stimulated hair bundles with a flexible glass probe and recorded their mechanical responses with a photometric system. When the stimulus frequency lay within a band enclosing a hair cell’s frequency of spontaneous oscillation, mechanical stimuli as small as ±5 nm entrained the hair-bundle oscillations. For small stimuli, the bundle movement was larger than the stimulus. Because the energy dissipated by viscous drag exceeded the work provided by the stimulus probe, the hair bundles powered their motion and therefore amplified it.
Resumo:
High-frequency reversible changes in colony morphology were observed in three strains of Cryptococcus neoformans. For one strain (SB4, serotype A), this process produced three colony types: smooth (S), wrinkled (W), and serrated (C). The frequency of switching between colony types varied for the individual colony transitions and was as high as 10−3. Mice infected with colony type W died faster than those infected with other colony types. The rat inflammatory response to infection with colony types S, W, and C was C > S > W and ranged from intense granulomatous inflammation with caseous necrosis for infection with type C to minimal inflammation for infection with type W. Infection with the various colony types was associated with different antibody responses to cryptococcal proteins in rats. Analysis of cellular characteristics revealed differences between the three colony types. High-frequency changes in colony morphology were also observed in two additional strains of C. neoformans. For one strain (24067A, serotype D) the switching occurred between smooth and wrinkled colonies. For the other strain (J32A, serotype A), the switching occurred between mucoid and nonmucoid colonies. The findings indicate that C. neoformans undergoes phenotypic switching and that this process can affect virulence and host inflammatory and immune responses. Phenotypic switching may play a role in the ability of this fungus to escape host defenses and establish chronic infections.
Resumo:
Thymidine dinucleotide (pTpT) stimulates melanogenesis in mammalian pigment cells and intact skin, mimicking the effects of UV irradiation and UV-mimetic DNA damage. Here it is shown that, in addition to tanning, pTpT induces a second photoprotective response, enhanced repair of UV-induced DNA damage. This enhanced repair results in a 2-fold increase in expression of a UV-damaged chloramphenicol acetyltransferase expression vector transfected into pTpT-treated skin fibroblasts and keratinocytes, compared with diluent-treated cells. Direct measurement of thymine dimers and (6–4) photoproducts by immunoassay demonstrates faster repair of both of these UV-induced photoproducts in pTpT-treated fibroblasts. This enhanced repair capacity also improves cell survival and colony-forming ability after irradiation. These effects of pTpT are accomplished, at least in part, by the up-regulation of a set of genes involved in DNA repair (ERCC3 and GADD45) and cell cycle inhibition (SDI1). At least two of these genes (GADD45 and SDI1) are known to be transcriptionally regulated by the p53 tumor suppressor protein. Here we show that pTpT activates p53, leading to nuclear accumulation of this protein, and also increases the specific binding of this transcription factor to its DNA consensus sequence.
Resumo:
Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.
Resumo:
This paper is devoted to the quantization of the degree of nonlinearity of the relationship between two biological variables when one of the variables is a complex nonstationary oscillatory signal. An example of the situation is the indicial responses of pulmonary blood pressure (P) to step changes of oxygen tension (ΔpO2) in the breathing gas. For a step change of ΔpO2 beginning at time t1, the pulmonary blood pressure is a nonlinear function of time and ΔpO2, which can be written as P(t-t1 | ΔpO2). An effective method does not exist to examine the nonlinear function P(t-t1 | ΔpO2). A systematic approach is proposed here. The definitions of mean trends and oscillations about the means are the keys. With these keys a practical method of calculation is devised. We fit the mean trends of blood pressure with analytic functions of time, whose nonlinearity with respect to the oxygen level is clarified here. The associated oscillations about the mean can be transformed into Hilbert spectrum. An integration of the square of the Hilbert spectrum over frequency yields a measure of oscillatory energy, which is also a function of time, whose mean trends can be expressed by analytic functions. The degree of nonlinearity of the oscillatory energy with respect to the oxygen level also is clarified here. Theoretical extension of the experimental nonlinear indicial functions to arbitrary history of hypoxia is proposed. Application of the results to tissue remodeling and tissue engineering of blood vessels is discussed.
Resumo:
Two different attentional networks have been associated with visuospatial attention and conflict resolution. In most situations either one of the two networks is active or both are increased in activity together. By using functional magnetic resonance imaging and a flanker task, we show conditions in which one network (anterior attention system) is increased in activity whereas the other (visuospatial attention system) is reduced, showing that attentional conflict and selection are separate aspects of attention. Further, we distinguish between neural systems involved in different forms of conflict. Specifically, we dissociate patterns of activity in the basal ganglia and insula cortex during simple violations in expectancies (i.e., sudden changes in the frequency of an event) from patterns of activity in the anterior attention system specifically correlated with response conflict as evidenced by longer response latencies and more errors. These data provide a systems-level approach in understanding integrated attentional networks.
Resumo:
Germ-line mutation induction at mouse minisatellite loci by acute irradiation with x-rays was studied at premeiotic and postmeiotic stages of spermatogenesis. An elevated paternal mutation rate was found after irradiation of premeiotic spermatogonia and stem cells, whereas the frequency of minisatellite mutation after postmeiotic irradiation of spermatids was similar to that in control litters. In contrast, paternal irradiation did not affect the maternal mutation rate. A linear dose–response curve for paternal mutation induced at premeiotic stages was found, with a doubling dose of 0.33 Gy, a value close to those obtained in mice after acute spermatogonia irradiation using other systems for mutation detection. High frequencies of spontaneous and induced mutations at minisatellite loci allow mutation induction to be evaluated at low doses of exposure in very small population samples, which currently makes minisatellite DNA the most powerful tool for monitoring radiation-induced germ-line mutation.
Resumo:
The induction of autoantibodies to U1 small nuclear ribonucleoprotein (U1 snRNP) complexes is not well understood. We present evidence that healthy individuals with cytomegalovirus (CMV) infection have an increased frequency and quantity of antibodies to ribonucleoprotein, directed primarily against the U1-70k protein. A significant association between the presence of antibodies to CMV and antibodies to the total RNP targeted by the immune response to the spliceosome (to both the Sm and RNP; Sm/RNP) was found for patients with systemic lupus erythematosus (SLE) but not those with mixed connective-tissue disease. CMV thus may play a role in inducing autoimmune responses in a subset of patients with systemic lupus erythematosus.
Resumo:
We review the mechanical origin of auditory-nerve excitation, focusing on comparisons of the magnitudes and phases of basilar-membrane (BM) vibrations and auditory-nerve fiber responses to tones at a basal site of the chinchilla cochlea with characteristic frequency ≈ 9 kHz located 3.5 mm from the oval window. At this location, characteristic frequency thresholds of fibers with high spontaneous activity correspond to magnitudes of BM displacement or velocity in the order of 1 nm or 50 μm/s. Over a wide range of stimulus frequencies, neural thresholds are not determined solely by BM displacement but rather by a function of both displacement and velocity. Near-threshold, auditory-nerve responses to low-frequency tones are synchronous with peak BM velocity toward scala tympani but at 80–90 dB sound pressure level (in decibels relative to 20 microPascals) and at 100–110 dB sound pressure level responses undergo two large phase shifts approaching 180°. These drastic phase changes have no counterparts in BM vibrations. Thus, although at threshold levels the encoding of BM vibrations into spike trains appears to involve only relatively minor signal transformations, the polarity of auditory-nerve responses does not conform with traditional views of how BM vibrations are transmitted to the inner hair cells. The response polarity at threshold levels, as well as the intensity-dependent phase changes, apparently reflect micromechanical interactions between the organ of Corti, the tectorial membrane and the subtectorial fluid, and/or electrical and synaptic processes at the inner hair cells.
Resumo:
A Cd2+-selective vibrating microelectrode was constructed using a neutral carrier-based Cd ionophore to investigate ion-transport processes along the roots of wheat (Triticum aestivum L.) and two species of Thlaspi, one a Zn/Cd hyperaccumulator and the other a related nonaccumulator. In simple Cd(NO3)2 solutions, the electrode exhibited a Nernstian response in solutions with Cd2+ activities as low as 50 nm. Addition of Ca2+ to the calibration solutions did not influence the slope of the calibration curve but reduced the detection limit to a solution activity of 1 μm Cd2+. Addition of high concentrations of K+ and Mg2+ to the calibration solution to mimic the ionic composition of the cytoplasm affected neither the slope nor the sensitivity of the electrode, demonstrating the pH-insensitive electrode's potential for intracellular investigations. The electrode was assayed for selectivity and was shown to be at least 1000 times more selective for Cd2+ than for any of those potentially interfering ions tested. Flux measurements along the roots of the two Thlaspi species showed no differences in the pattern or the magnitude of Cd2+ uptake within the time frame considered. The Cd2+-selective microelectrode will permit detailed investigations of heavy-metal ion transport in plant roots, especially in the area of phytoremediation.