12 resultados para FOLLICLE CURVATURE
em National Center for Biotechnology Information - NCBI
Resumo:
Previous studies indicated that there is a separate hypothalamic control of follicle-stimulating hormone (FSH) release distinct from that of luteinizing hormone (LH). An FSH-releasing factor (FSHRF) was purified from rat and sheep hypothalami, but has not been isolated. We hypothesized that FSHRF might be an analogue of mammalian luteinizing hormone-releasing hormone (m-LHRH) and evaluated the activity of many analogues of m-LHRH and of the known LHRHs found in lower forms. Here we demonstrate that lamprey (l) LHRH-III has a potent, dose-related FSH- but not LH-releasing action on incubated hemipituitaries of male rats. l-LHRH-I on the other hand, had little activity to release either FSH or LH. m-LHRH was equipotent to l-LHRH-III to release FSH, but also had a high potency to release LH in contrast to l-LHRH-III that selectively released FSH. Chicken LHRH-II had considerable potency to release both LH and FSH, but no selectivity in its action. Salmon LHRH had much less potency than the others tested, except for l-LHRH-I, and no selectivity in its action. Because ovariectomized, estrogen, progesterone-treated rats are a sensitive in vivo assay for FSH- and LH-releasing activity, we evaluated l-LHRH-III in this assay and found that it had a completely selective stimulatory effect on FSH release at the two doses tested (10 and 100 pmols). Therefore, l-LHRH-III is a highly potent and specific FSH-releasing peptide that may enhance fertility in animals and humans. It may be the long sought after m-FSHRF.
Phalangeal curvature and positional behavior in extinct sloth lemurs (Primates, Palaeopropithecidae)
Resumo:
Recent paleontological discoveries in Madagascar document the existence of a diverse clade of palaeopropithecids or “sloth lemurs”: Mesopropithecus (three species), Babakotia (one species), Palaeopropithecus (three species), and Archaeoindris (one species). This mini-radiation of now extinct (“subfossil”) lemurs is most closely related to the living indrids (Indri, Propithecus, and Avahi). Whereas the extant indrids are known for their leaping acrobatics, the palaeopropithecids (except perhaps for the poorly known giant Archaeoindris) exhibit numerous skeletal design features for antipronograde or suspensory positional behaviors (e.g., high intermembral indices and mobile joints). Here we analyze the curvature of the proximal phalanges of the hands and feet. Computed as the included angle (θ), phalangeal curvature develops in response to mechanical use and is known to be correlated in primates with hand and foot function in different habitats; terrestrial species have straighter phalanges than their arboreal counterparts, and highly suspensory forms such as the orangutan possess the most curved phalanges. Sloth lemurs as a group are characterized by very curved proximal phalanges, exceeding those seen in spider monkeys and siamangs, and approaching that of orangutans. Indrids have curvatures roughly half that of sloth lemurs, and the more terrestrial, subfossil Archaeolemur possesses the least curved phalanges of all the indroids. Taken together with many other derived aspects of their postcranial anatomy, phalangeal curvature indicates that the sloth lemurs are one of the most suspensory clades of mammals ever to evolve.
Resumo:
Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.
Resumo:
The energy of DNA deformation plays a crucial and active role in its packaging and its function in the cell. Considerable effort has gone into developing methodologies capable of evaluating the local sequence-directed curvature and flexibility of a DNA chain. These studies thus far have focused on DNA constructs expressly tailored either with anomalous flexibility or curvature tracts. Here we demonstrate that these two structural properties can be mapped also along the chain of a “natural” DNA with any sequence on the basis of its scanning force microscope (SFM) images. To know the orientation of the sequence of the investigated DNA molecules in their SFM images, we prepared a palindromic dimer of the long DNA molecule under study. The palindromic symmetry also acted as an internal gauge of the statistical significance of the analysis carried out on the SFM images of the dimer molecules. It was found that although the curvature modulus is not efficient in separating static and dynamic contributions to the curvature of the population of molecules, the curvature taken with its direction (its sign in two dimensions) permits the direct separation of the intrinsic curvature from the flexibility contributions. The sequence-dependent flexibility seems to vary monotonically with the chain's intrinsic curvature; the chain rigidity was found to modulate as its local thermodynamic stability and does not correlate with the dinucleotide chain rigidities evaluation made from x-ray data by other authors.
Resumo:
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm−3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity.
Resumo:
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.
Resumo:
The hair follicle is a cyclic, self renewing epidermal structure which is thought to be controlled by signals from the dermal papilla, a specialized cluster of mesenchymal cells within the dermis. Topical treatments with 17-beta-estradiol to the clipped dorsal skin of mice arrested hair follicles in telogen and produced a profound and prolonged inhibition of hair growth while treatment with the biologically inactive stereoisomer, 17-alpha-estradiol, did not inhibit hair growth. Topical treatments with ICI 182,780, a pure estrogen receptor antagonist, caused the hair follicles to exit telogen and enter anagen, thereby initiating hair growth. Immunohistochemical staining for the estrogen receptor in skin revealed intense and specific staining of the nuclei of the cells of the dermal papilla. The expression of the estrogen receptor in the dermal papilla was hair cycle-dependent with the highest levels of expression associated with the telogen follicle. 17-beta-Estradiol-treated epidermis demonstrated a similar number of 5-bromo-2'-deoxyuridine (BrdUrd) S-phase cells as the control epidermis above telogen follicles; however, the number of BrdUrd S-phase basal cells in the control epidermis varied according to the phase of the cycle of the underlying hair follicles and ranged from 2.6% above telogen follicles to 7.0% above early anagen follicles. These findings indicate an estrogen receptor pathway within the dermal papilla regulates the telogen-anagen follicle transition and suggest that diffusible factors associated with the anagen follicle influence cell proliferation in the epidermis.
Resumo:
Recent experiments have exposed significant discrepancies between experimental data and predictive models for DNA structure. These results strongly suggest that DNA structural parameters incorporated in the models are not always sufficient to account for the influence of sequence context and of specific ion effects. In an attempt to evaluate these two effects, we have investigated repetitive DNA sequences with the sequence motif GAGAG.CTCTC located in different helical phasing arrangements with respect to poly(A) tracts and GGGCCC.GGGCCC sequence motifs. Methods used are ligase-mediated cyclization and gel mobility experiments along with DNase I cutting and chemical probe studies. The results provide new evidence for curvature in poly(A) tracts. They also show that the sequence context in which bending and flexible sequence elements are found is an important aspect of sequence-dependent DNA conformation. Although dinucleotide models generally have good predictive power, this work demonstrates that in some instances sequence elements larger than the dinucleotide must be taken into account, and hence it provides a starting point for the appropriate modification and refinement of existing structural models for DNA.
Resumo:
Transcription factor CREM (cAMP-responsive element modulator) plays a pivotal role in the nuclear response to cAMP in neuroendocrine cells. We have previously shown that follicle-stimulating hormone (FSH) directs CREM expression in male germ cells. The physiological importance of FSH in Sertoli cell function prompted us to analyze its effect on CREM expression in these cells. We observed a dramatic and specific increase in the CREM isoform ICER (inducible cAMP early repressor) expression, with a peak 4 h after FSH treatment of primary Sertoli cells. Interestingly, induced levels of ICER protein persist for a considerably longer time. Induction of the repressor ICER accompanies early down-regulation of the FSH receptor transcript, which leads to long-term desensitization. Here we show that ICER represses FSH receptor expression by binding to a CRE-like sequence in the regulatory region of the gene. Our results confirm the crucial role played by CREM in hormonal control and suggest its role in the long-term desensitization phenomenon of peptide membrane receptors.
Resumo:
We present a controlled image smoothing and enhancement method based on a curvature flow interpretation of the geometric heat equation. Compared to existing techniques, the model has several distinct advantages. (i) It contains just one enhancement parameter. (ii) The scheme naturally inherits a stopping criterion from the image; continued application of the scheme produces no further change. (iii) The method is one of the fastest possible schemes based on a curvature-controlled approach.
Resumo:
Toroidal DNA condensates have received considerable attention for their possible relationship to the packaging of DNA in viruses and in general as a model of ordered DNA condensation. A spool-like model has primarily been supported for DNA organization within toroids. However, our observations suggest that the actual organization may be considerably different. We present an alternate model in which DNA for a given toroid is organized within a series of equally sized contiguous loops that precess about the toroid axis. A related model for the toroid formation process is also presented. This kinetic model predicts a distribution of toroid sizes for DNA condensed from solution that is in good agreement with experimental data.