10 resultados para FLEXIBILITY
em National Center for Biotechnology Information - NCBI
Resumo:
The crystal structure at 2.0-Å resolution of the complex of the Escherichia coli chemotaxis response regulator CheY and the phosphoacceptor-binding domain (P2) of the kinase CheA is presented. The binding interface involves the fourth and fifth helices and fifth β-strand of CheY and both helices of P2. Surprisingly, the two heterodimers in the asymmetric unit have two different binding modes involving the same interface, suggesting some flexibility in the binding regions. Significant conformational changes have occurred in CheY compared with previously determined unbound structures. The active site of CheY is exposed by the binding of the kinase domain, possibly to enhance phosphotransfer from CheA to CheY. The conformational changes upon complex formation as well as the observation that there are two different binding modes suggest that the plasticity of CheY is an essential feature of response regulator function.
Resumo:
3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17°C higher melting temperature. Its temperature optimum is 22–25°C higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a “corresponding state” regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.
Resumo:
The Oct-1 POU domain binds diverse DNA-sequence elements and forms a higher-order regulatory complex with the herpes simplex virus coregulator VP16. The POU domain contains two separate DNA-binding domains joined by a flexible linker. By protein–DNA photocrosslinking we show that the relative positioning of the two POU DNA-binding domains on DNA varies depending on the nature of the DNA target. On a single VP16-responsive element, the POU domain adopts multiple conformations. To determine the structure of the Oct-1 POU domain in a multiprotein complex with VP16, we allowed VP16 to interact with previously crosslinked POU-domain–DNA complexes and found that VP16 can associate with multiple POU-domain conformations. These results reveal the dynamic potential of a DNA-binding domain in directing transcriptional regulatory complex formation.
Resumo:
The thermal re-isomerization of retinal from the 13-cis to the all-trans state is a key step in the final stages of the photocycle of the light-driven proton pump, bacteriorhodopsin. This step is greatly slowed upon replacement of Leu-93, a residue in van der Waals contact with retinal. The most likely role of this key interaction is that it restricts the flexibility of retinal. To test this hypothesis, we have exchanged native retinal in Leu-93 mutants with bridged retinal analogs that render retinal less flexible by restricting free rotation around either the C10—C11 (9,11-bridged retinal) or C12—C13 (11,13-bridged retinal) single bonds. The effect of the analogs on the photocycle was then determined spectroscopically by taking advantage of the previous finding that the decay of the O intermediate in the Leu-93 mutants provides a convenient marker for retinal re-isomerization. Time-resolved spectroscopic studies showed that both retinal analogs resulted in a dramatic acceleration of the photocycling time by increasing the rate of decay of the O intermediate. In particular, exchange of native retinal in the Leu-93 → Ala mutant with the 9,11-bridged retinal resulted in an acceleration of the decay of the O intermediate to a rate similar to that seen in wild-type bacteriorhodopsin. We conclude that the protein-induced restriction of conformational flexibility in retinal is a key structural requirement for efficient protein–retinal coupling in the bacteriorhodopsin photocycle.
Resumo:
Immature CD4+CD8+ thymocytes expressing T-cell antigen receptors (TCR) are selected by TCR-mediated recognition of peptides associated with major histocompatibility complex molecules on thymic stromal cells. Selection ensures reactivity of the mature cells to foreign antigens and tolerance to self. Although much has been learned about the factors that determine whether a thymocyte with a given specificity will be positively or negatively selected, selection as an aspect of the developmental process as a whole is less well-understood. Here we invoke a model in which thymocytes tune their response characteristics individually and dynamically in the course of development. Cellular development and selection are driven by receptor-mediated metabolic perturbations. Perturbation is a measure of the net intracellular change induced by external stimulation. It results from the integration of several signals and countersignals over time and therefore depends on the environment and the maturation stage of the cell. Individual cell adaptation limits the range of perturbations. Such adaptation renders thymocytes less sensitive to the level of stimulation per se, but responsive to environmental changes in that level. This formulation begins to explain the mechanisms that link developmental and selection events to each other.
Resumo:
Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.
Resumo:
The energy of DNA deformation plays a crucial and active role in its packaging and its function in the cell. Considerable effort has gone into developing methodologies capable of evaluating the local sequence-directed curvature and flexibility of a DNA chain. These studies thus far have focused on DNA constructs expressly tailored either with anomalous flexibility or curvature tracts. Here we demonstrate that these two structural properties can be mapped also along the chain of a “natural” DNA with any sequence on the basis of its scanning force microscope (SFM) images. To know the orientation of the sequence of the investigated DNA molecules in their SFM images, we prepared a palindromic dimer of the long DNA molecule under study. The palindromic symmetry also acted as an internal gauge of the statistical significance of the analysis carried out on the SFM images of the dimer molecules. It was found that although the curvature modulus is not efficient in separating static and dynamic contributions to the curvature of the population of molecules, the curvature taken with its direction (its sign in two dimensions) permits the direct separation of the intrinsic curvature from the flexibility contributions. The sequence-dependent flexibility seems to vary monotonically with the chain's intrinsic curvature; the chain rigidity was found to modulate as its local thermodynamic stability and does not correlate with the dinucleotide chain rigidities evaluation made from x-ray data by other authors.
Resumo:
Interactions of sulfhydryl reagents with introduced cysteines in the pore-forming (Kir6.2) subunits of the KATP channel were examined. 2-Aminoethyl methanethiosulfonate (MTSEA+) failed to modify Cd2+-insensitive control-Kir6.2 channels, but rapidly and irreversibly modified Kir6.2[L164C] (L164C) channels. Although a single Cd2+ ion is coordinated by L164C, four MTSEA+ “hits” can occur, each sequentially reducing the single-channel current. A dimeric fusion of control-Kir6.2 and L164C subunits generates Cd2+-insensitive channels, confirming that at least three cysteines are required for coordination, but MTSEA+ modification of the dimer occurs in two hits. L164C channels were not modified by bromotrimethyl ammoniumbimane (qBBr+), even though qBBr+ caused voltage-dependent block (as opposed to modification) that was comparable to that of MTSEA+ or 3-(triethylammonium)propyl methanethiosulfonate (MTSPTrEA+), implying that qBBr+ can also enter the inner cavity but does not modify L164C residues. The Kir channel pore structure was modeled by homology with the KcsA crystal structure. A stable conformation optimally places the four L164C side chains for coordination of a single Cd2+ ion. Modification of these cysteines by up to four MTSEA+ (or three MTSPTrEA+, or two qBBr+) does not require widening of the cavity to accommodate the derivatives within it. However, like the KcsA crystal structure, the energy-minimized model shows a narrowing at the inner entrance, and in the Kir6.2 model this narrowing excludes all ions. To allow entry of ions as large as MTSPTrEA+ or qBBr+, the entrance must widen to >8 Å, but this widening is readily accomplished by minimal M2 helix motion and side-chain rearrangement.
Resumo:
Quasielastic incoherent neutron scattering from hydrogen atoms, which are distributed nearly homogeneously in biological molecules, allows the investigation of diffusive motions occurring on the pico- to nanosecond time scale. A quasielastic incoherent neutron scattering study was performed on the integral membrane protein bacteriorhodopsin (BR), which is a light-driven proton pump in Halobacterium salinarium. BR is embedded in lipids, forming patches in the cell membrane of the organism, which are the so called purple membranes (PMs). Measurements were carried out at room temperature on oriented PM-stacks hydrated at two different levels (low hydration, h = 0.03 g of D2O per g of PM; high hydration, h = 0.28 g of D2O per g of PM) using time-of-flight spectrometers. From the measured spectra, different diffusive components were identified and analyzed with respect to the influence of hydration. This study supports the idea that a decrease in hydration results in an appreciable decrease in internal molecular flexibility of the protein structure. Because it is known from studies on the function of BR that the pump activity is reduced if the hydration level of the protein is insufficient, we conclude that the observed diffusive motions are essential for the function of this protein. A detailed analysis and classification of the different kinds of diffusive motions, predominantly occurring in PMs under physiological conditions, is presented.
Resumo:
The transforming growth factors beta (TGF-beta s) are important modulators of growth and differentiation. They are intermolecular disulfide-bonded homodimeric molecules. The monomer fold has a conserved cystine knot and lacks a hydrophobic core. The biological specificity of a given member of the family is believed to be determined by the conformational flexibility of the variable loop regions of the monomer. The monomer subunit assembly in the dimer is stabilized mainly by hydrophobic contacts and a few hydrogen bonds. Since these interactions are nondirectional, we examined subunit assemblies of TGF-beta by using conformational analysis. The different subunit assemblies in TGF-beta 2 dimer were characterized in terms of the intersubunit disulfide torsion. Our analyses show that the subunit assemblies fall into two states: the crystallographically observed gauche+conformation and the previously not reported gauche--conformation, both having almost identical interaction energies. Furthermore, there is significant flexibility in the subunit assembly within the gauche+ and the gauche- states of the disulfide bond. The monomer subunit assembly is independent of the variations about the loop regions. The variations in the loop regions, coupled with flexibility in the monomer assembly, lead to a complex flexibility in the dimer of the TGF-beta superfamily. For the TGF-beta superfamily, the cystine knot acts as a scaffold and complex flexibility provides for biological selectivity. Complex flexibility might provide an explanation for the diverse range of biological activities that these important molecules display.