4 resultados para F2 - International Factor Movements

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SH2 domain-containing tyrosine phosphatase Shp2 plays a pivotal role during the gastrulation of vertebrate embryos. However, because of the complex phenotype observed in mouse mutant embryos, the precise role of Shp2 during development is unclear. To define the specific functions of this phosphatase, Shp2 homozygous mutant embryonic stem cells bearing the Rosa-26 LacZ transgene were isolated and used to perform a chimeric analysis. Here, we show that Shp2 mutant cells amass in the tail bud of embryonic day 10.5 chimeric mouse embryos and that this accumulation begins at the onset of gastrulation. At this early stage, Shp2 mutant cells collect in the primitive streak of the epiblast and thus show deficiencies in their contribution to the mesoderm lineage. In high-contribution chimeras, we show that overaccumulation of Shp2 mutant cells at the posterior end of the embryo results in two abnormal phenotypes: spina bifida and secondary neural tubes. Consistent with a failure to undergo morphogenic movements at gastrulation, Shp2 is required for embryo fibroblast cells to mount a positive chemotactic response to acidic fibroblast growth factor in vitro. Our results demonstrate that Shp2 is required at the initial steps of gastrulation, as nascent mesodermal cells form and migrate away from the primitive streak. The aberrant behavior of Shp2 mutant cells at gastrulation may result from their inability to properly respond to signals initiated by fibroblast growth factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 von Willebrand disease (VWD), characterized by reduced levels of plasma von Willebrand factor (VWF), is the most common inherited bleeding disorder in humans. Penetrance of VWD is incomplete, and expression of the bleeding phenotype is highly variable. In addition, plasma VWF levels vary widely among normal individuals. To identify genes that influence VWF level, we analyzed a genetic cross between RIIIS/J and CASA/Rk, two strains of mice that exhibit a 20-fold difference in plasma VWF level. DNA samples from F2 progeny demonstrating either extremely high or extremely low plasma VWF levels were pooled and genotyped for 41 markers spanning the autosomal genome. A novel locus accounting for 63% of the total variance in VWF level was mapped to distal mouse chromosome 11, which is distinct from the murine Vwf locus on chromosome 6. We designated this locus Mvwf for “modifier of VWF.” Additional genotyping of as many as 2407 meioses established a high resolution genetic map with gene order Cola1-Itg3a-Ngfr-Mvwf/Gip-Hoxb9-Hoxb1-Cbx·rs2-Cox5a-Gfap. The Mvwf candidate interval between Ngfr and Hoxb9 is ≈0.5 centimorgan (cM). These results demonstrate that a single dominant gene accounts for the low VWF phenotype of RIIIS/J mice in crosses with several other strains. The pattern of inheritance suggests a gain-of-function mutation in a unique component of VWF biosynthesis or processing. Characterization of the human homologue for Mvwf may have relevance for a subset of type 1 VWD cases and may define an important genetic factor modifying penetrance and expression of mutations at the VWF locus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Familial structural rearrangements of chromosomes represent a factor of malformation risk that could vary over a large range, making genetic counseling difficult. However, they also represent a powerful tool for increasing knowledge of the genome, particularly by studying breakpoints and viable imbalances of the genome. We have developed a collaborative database that now includes data on more than 4100 families, from which we have developed a web site called HC Forum® (http://HCForum.imag.fr). It offers geneticists assistance in diagnosis and in genetic counseling by assessing the malformation risk with statistical models. For researchers, interactive interfaces exhibit the distribution of chromosomal breakpoints and of the genome regions observed at birth in trisomy or in monosomy. Dedicated tools including an interactive pedigree allow electronic submission of data, which will be anonymously shown in a forum for discussions. After validation, data are definitively registered in the database with the email of the sender, allowing direct location of biological material. Thus HC Forum® constitutes a link between diagnosis laboratories and genome research centers, and after 1 year, more than 700 users from about 40 different countries already exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait.