2 resultados para External detection

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amperometry at a carbon fiber microelectrode modified with a composite of ruthenium oxide and cyanoruthenate was used to monitor chemical secretions of single pancreatic beta cells from rats and humans. When the insulin secretagogues glucose, tolbutamide, and K+ were applied to the cell, a series of randomly occurring current spikes was observed. The current spikes were shown to be due to the detection of chemical substances secreted from the cell. Chromatography showed that the primary secreted substance detected by the electrode was insulin. The current spikes were strongly dependent on external Ca2+, had an average area that was independent of the stimulation method, and had an area distribution which corresponded to the distribution of vesicle sizes in beta cells. It was concluded that the spikes were due to the detection of concentration pulses of insulin secreted by exocytosis.