3 resultados para Experimental watershed areas

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the role of intracellular Ca2+ in compaction, the first morphogenetic event in embryogenesis, we analyzed preimplantation mouse embryos under several decompacting conditions, including depletion of extracellular Ca2+, blocking of Ca2+ channels, and inhibition of microfilaments, calmodulin, and intracellular Ca2+ release. Those treatments induced decompaction of mouse morulae and simultaneously induced changes in cytosolic free Ca2+ concentration and deregionalization of E-cadherin and fodrin. When morulae were allowed to recompact, the location of both proteins recovered. In contrast, actin did not change its cortical location with compaction nor with decompaction-recompaction. Calmodulin localized in areas opposite to cell–cell contacts in eight-cell stage embryos before and after compaction. Inhibition of calmodulin with trifluoperazine induced its delocalization while morulae decompacted. A nonspecific rise of intracellular free Ca2+ provoked by ionomycin did not affect the compacted shape. Moreover, the same decompacting treatments when applied to uncompacted embryos did not produce any change in intracellular Ca2+. Our results demonstrate that in preimplantation mouse embryos experimentally induced stage-specific changes of cell shape are accompanied by changes of intracellular free Ca2+ and redistribution of the cytoskeleton-related proteins E-cadherin, fodrin, and calmodulin. We conclude that intracellular Ca2+ specifically is involved in compaction and probably regulates the function and localization of cytoskeleton elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultrastructural pathology of myelinated axons in mice infected experimentally with the Fujisaki strain of Creutzfeldt-Jakob disease (CJD) virus is characterized by myelin sheath vacuolation that closely resembles that induced in murine spinal cord organotypic cultures by tumor necrosis factor alpha (TNF-alpha), a cytokine produced by astrocytes and macrophages. To clarify the role of TNF-alpha in experimental CJD, we investigated the expression of TNF-alpha in brain tissues from CJD virus-infected mice at weekly intervals after inoculation by reverse transcription-coupled PCR, Northern and Western blot analyses, and immunocytochemical staining. Neuropathological findings by electron microscopy, as well as expression of interleukin 1 alpha and glial fibrillary acidic protein, were concurrently monitored. As determined by reverse transcription-coupled PCR, the expression of TNF-alpha, interleukin 1 alpha, and glial fibrillary acidic protein was increased by approximately 200-fold in the brains of CJD virus-inoculated mice during the course of disease. By contrast, beta-actin expression remained unchanged. Progressively increased expression of TNF-alpha in CJD virus-infected brain tissues was verified by Northern and Western blot analyses, and astrocytes in areas with striking myelin sheath vacuolation were intensely stained with an antibody against murine TNF-alpha. The collective findings of TNF-alpha overexpression during the course of clinical disease suggest that TNF-alpha may mediate the myelin sheath vacuolation observed in experimental CJD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To compare effects of insulin-like growth factor I (IGF-I) and placebo treatment on lesions that resemble those seen during active demyelination in multiple sclerosis, we induced experimental autoimmune encephalomyelitis in Lewis rats with an emulsion containing guinea pig spinal cord and Freund's adjuvant. On day 12-13, pairs of rats with the same degree of weakness were given either IGF-I or placebo intravenously twice daily for 8 days. After 8 days of placebo or IGF-I (200 micrograms/day or 1 mg/day) treatment, the spinal cord lesions were studied by in situ hybridization and with immunocytochemical and morphological methods. IGF-I produced significant reductions in numbers and areas of demyelinating lesions. These lesions contained axons surrounded by regenerating myelin segments instead of demyelinated axons seen in the placebo-treated rats. Relative mRNA levels for myelin basic protein, proteolipid protein (PLP), and 2',3'-cyclic nucleotide 3'-phosphodiesterase in lesions of IGF-I-treated rats were significantly higher than they were in placebo-treated rats. PLP mRNA-containing oligodendroglia also were more numerous and relative PLP mRNA levels per oligodendrocyte were higher in lesions of IGF-I-treated rats. Finally, a significantly higher proportion of proliferating cells were oligodendroglia-like cells in lesions of IGF-I-treated rats. We think that IGF-I effects on oligodendrocytes, myelin protein synthesis, and myelin regeneration reduced lesion severity and promoted clinical recovery in this experimental autoimmune encephalomyelitis model. These IGF-I actions may also benefit patients with multiple sclerosis.