5 resultados para Exotic quarkonia
em National Center for Biotechnology Information - NCBI
Resumo:
A detailed restriction fragment length polymorphism map was used to determine the chromosomal locations and subgenomic distributions of quantitative trait loci (QTLs) segregating in a cross between cultivars of allotetraploid (AADD) Gossypium hirsutum (“Upland” cotton) and Gossypium barbadense (“Sea Island,” “Pima,” or “Egyptian” cotton) that differ markedly in the quality and quantity of seed epidermal fibers. Most QTLs influencing fiber quality and yield are located on the “D” subgenome, derived from an ancestor that does not produce spinnable fibers. D subgenome QTLs may partly account for the fact that domestication and breeding of tetraploid cottons has resulted in fiber yield and quality levels superior to those achieved by parallel improvement of “A” genome diploid cottons. The merger of two genomes with different evolutionary histories in a common nucleus appears to offer unique avenues for phenotypic response to selection. This may partly compensate for reduction in quantitative variation associated with polyploid formation and be one basis for the prominence of polyploids among extant angiosperms. These findings impel molecular dissection of the roles of divergent subgenomes in quantitative inheritance in many other polyploids and further exploration of both “synthetic” polyploids and exotic diploid genotypes for agriculturally useful variation.
Resumo:
Crop gene pools have adapted to and sustained the demands of agricultural systems for thousands of years. Yet, very little is known about their content, distribution, architecture, or circuitry. The presumably shallow elite gene pools often continue to yield genetic gains while the exotic pools remain mostly untapped, uncharacterized, and underutilized. The concept and content of a crop’s gene pools are being changed by advancements in plant science and technology. In the first generation of plant genomics, DNA markers have refined some perceptions of genetic variation by providing a glimpse of a primary source, DNA polymorphism. The markers have provided new and more powerful ways of assessing genetic relationships, diversity, and merit by infusing genetic information for the first time in many scenarios or in a more comprehensive manner for others. As a result, crop gene pools may be supplemented through more rapid and directed methods from a greater variety of sources. Previously limited by the barriers of sexual reproduction, the native gene pools will soon be complemented by another gene pool (transgenes) and perhaps by other native exotic gene pools through comparative analyses of plants’ biological repertoire. Plant genomics will be an important force of change for crop improvement. The plant science community and crop gene pools may be united and enriched as never before. Also, the genomes and gene pools, the products of evolution and crop domestication, will be reduced and subjected to the vagaries and potential divisiveness of intellectual property considerations. Let the gains begin.
Resumo:
A 7000-year-long sequence of environmental change during the Holocene has been reconstructed for a central Pacific island (Mangaia, Cook Islands). The research design used geomorphological and palynological methods to reconstruct vegetation history, fire regime, and erosion and depositional rates, whereas archaeological methods were used to determine prehistoric Polynesian land use and resource exploitation. Certain mid-Holocene environmental changes are putatively linked with natural phenomena such as eustatic sea-level rise and periodic El Niño-Southern Oscillation events. However, the most significant changes were initiated between 2500 and 1800 years and were directly or indirectly associated with colonization by seafaring Polynesian peoples. These human-induced effects included major forest clearance, increased erosion of volcanic hillsides and alluvial deposition in valley bottoms, significant increases in charcoal influx, extinctions of endemic terrestrial species, and the introduction of exotic species.
Resumo:
The heavy fermions are a subset of the f-electron intermetallic compounds straddling the magnetic/nonmagnetic boundary. Their low-temperature properties are characterized by an electronic energy scale of order 1-10 K. Among the low-temperature ground states observed in heavy fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems.
Resumo:
All records of the exotic mammalian family Ptolemaiidae are known from 182 m of section in the lower to middle parts of the upper Eocene and lower Oligocene Jebel Qatrani Formation, Fayum Depression, Egypt. Previous tentative assignments of ptolemaiid affinity have suggested that these animals are allied with the primitive suborder Pantolesta (currently placed in the order Cimolesta). Though perhaps ultimately derived from an unknown member of that group, the likelihood that ptolemaiids constitute a distinct group is considered, and analysis of all known materials of Ptolemaia, Qarunavus, and Cleopatrodon demonstrates that these genera belong in their own order, the Ptolemaiida, described here. The morphologically unique dentition and only known ptolemaiid cranium, that of Ptolemaia grangeri, is described. Although Qarunavus and Cleopatrodon show some similarities in primitive characters to European merialine Paroxyclaenidae (suborder Pantolesta), their affinities clearly lie with Ptolemaia and the Ptolemaiida.