3 resultados para Exothermic

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrary to previous theoretical studies at the UHF/6-31G* level, the methonium radical dication CH52+ is not a Cs symmetrical structure with a 2e—3c bond but a C2v symmetrical structure 1 with two 2e—3c bonds (at the UHF/6-31G**, UMP2/6-31G**, and UQCISD(T)/6-311G** levels). The Cs symmetrical structure is not even a minimum at the higher level of calculations. The four hydrogen atoms in 1 are bonded to the carbon atom by two 2e—3c bonds and the fifth hydrogen atom by a 2e—2c bond. The unpaired electron of 1 is located in a formal p-orbital (of the sp2-hybridized carbon atom) perpendicular to the plane of the molecule. Hydrogen scrambling in 1 is however extremely facile, as is in other C1 cations. It is found that the protonation of methane to CH5+ decreases the energy for subsequent homolytic cleavage resulting in the exothermic (24.1 kcal/mol) formation of CH4+•. Subsequent reaction with neutral methane while reforming CH5+ gives the methyl radical enabling reaction with excess methane to ethane and H2. The overall reaction is endothermic by 11.4 kcal/mol, but offers under conditions of oxidative removal of H2 an alternative to the more energetic carbocationic conversion of methane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical problem of thermal explosion is modified so that the chemically active gas is not at rest but is flowing in a long cylindrical pipe. Up to a certain section the heat-conducting walls of the pipe are held at low temperature so that the reaction rate is small and there is no heat release; at that section the ambient temperature is increased and an exothermic reaction begins. The question is whether a slow reaction regime will be established or a thermal explosion will occur. The mathematical formulation of the problem is presented. It is shown that when the pipe radius is larger than a critical value, the solution of the new problem exists only up to a certain distance along the axis. The critical radius is determined by conditions in a problem with a uniform axial temperature. The loss of existence is interpreted as a thermal explosion; the critical distance is the safe reactor’s length. Both laminar and developed turbulent flow regimes are considered. In a computational experiment the loss of the existence appears as a divergence of a numerical procedure; numerical calculations reveal asymptotic scaling laws with simple powers for the critical distance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry is combined with solution-depletion isotherm data to analyze the thermodynamics of binding of the cellulose-binding domain (CBD) from the beta-1,4-(exo)glucanase Cex of Cellulomonas fimi to insoluble bacterial microcrystalline cellulose. Analysis of isothermal titration microcalorimetry data against two putative binding models indicates that the bacterial microcrystalline cellulose surface presents two independent classes of binding sites, with the predominant high-affinity site being characterized by a Langmuir-type Ka of 6.3 (+/-1.4) x 10(7) M-1 and the low-affinity site by a Ka of 1.1 (+/-0.6) x 10(6) M-1. CBDCex binding to either site is exothermic, but is mainly driven by a large positive change in entropy. This differs from protein binding to soluble carbohydrates, which is usually driven by a relatively large exothermic standard enthalpy change for binding. Differential heat capacity changes are large and negative, indicating that sorbent and protein dehydration effects make a dominant contribution to the driving force for binding.