35 resultados para Exons (Genetics)
em National Center for Biotechnology Information - NCBI
Resumo:
The inducible nitric oxide synthase (iNOS) contains an amino-terminal oxygenase domain, a carboxy-terminal reductase domain, and an intervening calmodulin-binding region. For the synthesis of nitric oxide (NO), iNOS is active as a homodimer. The human iNOS mRNA is subject to alternative splicing, including deletion of exons 8 and 9 that encode amino acids 242–335 of the oxygenase domain. In this study, iNOS8−9− and full-length iNOS (iNOSFL) were cloned from bronchial epithelial cells. Expression of iNOS8−9− in 293 cell line resulted in generation of iNOS8−9− mRNA and protein but did not lead to NO production. In contrast to iNOSFL, iNOS8−9− did not form dimers. Similar to iNOSFL, iNOS8−9− exhibited NADPH-diaphorase activity and contained tightly bound calmodulin, indicating that the reductase and calmodulin-binding domains were functional. To identify sequences in exons 8 and 9 that are critical for dimerization, iNOSFL was used to construct 12 mutants, each with deletion of eight residues in the region encoded by exons 8 and 9. In addition, two “control” iNOS deletion mutants were synthesized, lacking either residues 45–52 of the oxygenase domain or residues 1131–1138 of the reductase domain. Whereas both control deletion mutants generated NO and formed dimers, none of the 12 other mutants formed dimers or generated NO. The region encoded by exons 8 and 9 is critical for iNOS dimer formation and NO production but not for reductase activity. This region could be a potential target for therapeutic interventions aimed at inhibiting iNOS dimerization and hence NO synthesis.
Resumo:
Low caloric intake (caloric restriction) can lengthen the life span of a wide range of animals and possibly even of humans. To understand better how caloric restriction lengthens life span, we used genetic methods and criteria to investigate its mechanism of action in the nematode Caenorhabditis elegans. Mutations in many genes (eat genes) result in partial starvation of the worm by disrupting the function of the pharynx, the feeding organ. We found that most eat mutations significantly lengthen life span (by up to 50%). In C. elegans, mutations in a number of other genes that can extend life span have been found. Two genetically distinct mechanisms of life span extension are known: a mechanism involving genes that regulate dauer formation (age-1, daf-2, daf-16, and daf-28) and a mechanism involving genes that affect the rate of development and behavior (clk-1, clk-2, clk-3, and gro-1). We find that the long life of eat-2 mutants does not require the activity of DAF-16 and that eat-2; daf-2 double mutants live even longer than extremely long-lived daf-2 mutants. These findings demonstrate that food restriction lengthens life span by a mechanism distinct from that of dauer-formation mutants. In contrast, we find that food restriction does not further increase the life span of long-lived clk-1 mutants, suggesting that clk-1 and caloric restriction affect similar processes.
Resumo:
Mouse Tabby (Ta) and X chromosome-linked human EDA share the features of hypoplastic hair, teeth, and eccrine sweat glands. We have cloned the Ta gene and find it to be homologous to the EDA gene. The gene is altered in two Ta alleles with a point mutation or a deletion. The gene is expressed in developing teeth and epidermis; no expression is seen in corresponding tissues from Ta mice. Ta and EDA genes both encode alternatively spliced forms; novel exons now extend the 3′ end of the EDA gene. All transcripts recovered have the same 5′ exon. The longest Ta cDNA encodes a 391-residue transmembrane protein, ectodysplasin-A, containing 19 Gly-Xaa-Yaa repeats. The isoforms of ectodysplasin-A may correlate with differential roles during embryonic development.
Resumo:
Geographic variation in cancer rates is thought to be the result of two major factors: environmental agents varying spatially and the attributes, genetic or cultural, of the populations inhabiting the areas studied. These attributes in turn result from the history of the populations in question. We had previously constructed an ethnohistorical database for Europe since 2200 B.C., permitting estimates of the ethnic composition of modern European populations. We were able to show that these estimates correlate with genetic distances. In this study, we wanted to see whether they also correlate with cancer rates. We employed two data sets of cancer mortalities from 42 types of cancer for the European Economic Community and for Central Europe. We subjected spatial differences in cancer mortalities, genetic, ethnohistorical, and geographic distances to matrix permutation tests to determine the magnitude and significance of their association. Our findings are that distances in cancer mortalities are correlated more with ethnohistorical distances than with genetic distances. Possibly the cancer rates may be affected by loci other than the genetic systems available to us, and/or by cultural factors mediated by the ethnohistorical differences. We find it remarkable that patterns of frequently ancient ethnic admixture are still reflected in modern cancer mortalities. Partial correlations with geography suggest that local environmental factors affect the mortalities as well.
Resumo:
The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet.
Resumo:
The central problem of complex inheritance is to map oligogenes for disease susceptibility, integrating linkage and association over samples that differ in several ways. Combination of evidence over multiple samples with 1,037 families supports loci contributing to asthma susceptibility in the cytokine region on 5q [maximum logarithm of odds (lod) = 2.61 near IL-4], but no evidence for atopy. The principal problems with retrospective collaboration on linkage appear to have been solved, providing far more information than a single study. A multipoint lod table evaluated at commonly agreed reference loci is required for both collaboration and metaanalysis, but variations in ascertainment, pedigree structure, phenotype definition, and marker selection are tolerated. These methods are invariant with statistical methods that increase the power of lods and are applicable to all diseases, motivating collaboration rather than competition. In contrast to linkage, positional cloning by allelic association has yet to be extended to multiple samples, a prerequisite for efficient combination with linkage and the greatest current challenge to genetic epidemiology.
Resumo:
The ‘Atlas of Genetics and Cytogenetics in Oncology and Haematology’ (http://www.infobiogen.fr/services/chromcancer) is an Internet database aimed at genes involved in cancer, cytogenetics and clinical entities in cancer, and cancer-prone diseases. It presents information in concise and updated reviews (cards) or longer texts (deep insights), a (new) case report section, a huge portal towards genetics and/or cancer databases, and teaching items in genetics for students in medicine and the sciences. This database is made for and by clinicians and researchers in the above-mentioned fields, who are encouraged to contribute. It deals with cancer research, genomics and cytogenomics. It is at the crossroads of research, post-university teaching and telemedicine. The Atlas is available at no cost.
Resumo:
Analysis of genetic variation among modern individuals is providing insight into prehistoric events. Comparisons of levels and patterns of genetic diversity with the predictions of models based on archeological evidence suggest that the spread of early farmers from the Levant was probably the main episode in the European population history, but that both older and more recent processes have left recognizable traces in the current gene pool.
Resumo:
External (environmental) factors affecting the speciation of birds are better known than the internal (genetic) factors. The opposite is true for several groups of invertebrates, Drosophila being the outstanding example. Ideas about the genetics of speciation in general trace back to Dobzhansky who worked with Drosophila. These ideas are an insufficient guide for reconstructing speciation in birds for two main reasons. First, speciation in birds proceeds with the evolution of behavioral barriers to interbreeding; postmating isolation usually evolves much later, perhaps after gene exchange has all but ceased. As a consequence of the slow evolution of postmating isolating factors the scope for reinforcement of premating isolation is small, whereas the opportunity for introgressive hybridization to influence the evolution of diverging species is large. Second, premating isolation may arise from nongenetic, cultural causes; isolation may be affected partly by song, a trait that is culturally inherited through an imprinting-like process in many, but not all, groups of birds. Thus the genetic basis to the origin of bird species is to be sought in the inheritance of adult traits that are subject to natural and sexual selection. Some of the factors involved in premating isolation (plumage, morphology, and behavior) are under single-gene control, most are under polygenic control. The genetic basis of the origin of postmating isolating factors affecting the early development of embryos (viability) and reproductive physiology (sterility) is almost completely unknown. Bird speciation is facilitated by small population size, involves few genetic changes, and occurs relatively rapidly.