10 resultados para Excited states

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived “dark” states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fluorescence of a polyanionic conjugated polymer can be quenched by extremely low concentrations of cationic electron acceptors in aqueous solutions. We report a greater than million-fold amplification of the sensitivity to fluorescence quenching compared with corresponding “molecular excited states.” Using a combination of steady-state and ultrafast spectroscopy, we have established that the dramatic quenching results from weak complex formation [polymer(−)/quencher(+)], followed by ultrafast electron transfer from excitations on the entire polymer chain to the quencher, with a time constant of 650 fs. Because of the weak complex formation, the quenching can be selectively reversed by using a quencher-recognition diad. We have constructed such a diad and demonstrate that the fluorescence is fully recovered on binding between the recognition site and a specific analyte protein. In both solutions and thin films, this reversible fluorescence quenching provides the basis for a new class of highly sensitive biological and chemical sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single light-harvesting complexes LH-2 from Rhodopseudomonas acidophila were immobilized on various charged surfaces under physiological conditions. Polarized light experiments showed that the complexes were situated on the surface as nearly upright cylinders. Their fluorescence lifetimes and photobleaching properties were obtained by using a confocal fluorescence microscope with picosecond time resolution. Initially all molecules fluoresced with a lifetime of 1 ± 0.2 ns, similar to the bulk value. The photobleaching of one bacteriochlorophyll molecule from the 18-member assembly caused the fluorescence to switch off completely, because of trapping of the mobile excitations by energy transfer. This process was linear in light intensity. On continued irradiation the fluorescence often reappeared, but all molecules did not show the same behavior. Some LH-2 complexes displayed a variation of their quantum yields that was attributed to photoinduced confinement of the excited states and thereby a diminution of the superradiance. Others showed much shorter lifetimes caused by excitation energy traps that are only ≈3% efficient. On repeated excitation some molecules entered a noisy state where the fluorescence switched on and off with a correlation time of ≈0.1 s. About 490 molecules were examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose an interpretation of the experimental findings of Klinman and coworkers [Cha, Y., Murray, C. J. & Klinman, J. P. (1989) Science 243, 1325–1330; Grant, K. L. & Klinman, J. P. (1989) Biochemistry 28, 6597–6605; and Bahnson, B. J. & Klinman, J. P. (1995) Methods Enzymol. 249, 373–397], who showed that proton transfer reactions that are catalyzed by bovine serum amine oxidase proceed through tunneling. We show that two different tunneling models are consistent with the experiments. In the first model, the proton tunnels from the ground state. The temperature dependence of the kinetic isotope effect is caused by a thermally excited substrate mode that modulates the barrier, as has been suggested by Borgis and Hynes [Borgis, D. & Hynes, J. T. (1991) J. Chem. Phys. 94, 3619–3628]. In the second model, there is both over-the-barrier transfer and tunneling from excited states. Finally, we propose two experiments that can distinguish between the possible mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S1 state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S1 state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S2 state or the recently discovered dark state situated between S1 and S2. The lifetimes of the carotenoid S1 states in the B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7 ± 0.5 ps and 6 ± 0.5 ps, respectively, and in the light-harvesting complex 2 of Rhodobacter sphaeroides ≈1.9 ± 0.5 ps. These results explain the differences in the carotenoid to bacteriochlorophyll energy transfer efficiency after S2 excitation. In Rps. acidophila the carotenoid S1 to bacteriochlorophyll energy transfer is found to be quite inefficient (φET1 <28%) whereas in Rb. sphaeroides this energy transfer is very efficient (φET1 ≈80%). The results are rationalized by calculations of the ensemble averaged time constants. We find that the Car S1 → B800 electronic energy transfer (EET) pathway (≈85%) dominates over Car S1 → B850 EET (≈15%) in Rb. sphaeroides, whereas in Rps. acidophila the Car S1 → B850 EET (≈60%) is more efficient than the Car S1 → B800 EET (≈40%). The individual electronic couplings for the Car S1 → BChl energy transfer are estimated to be approximately 5–26 cm−1. A major contribution to the difference between the energy transfer efficiencies can be explained by different Car S1 energy gaps in the two species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiphoton ionization of thymine and uracil clusters generated by a supersonic molecular beam gave rise to a remarkable alternation of mass spectral intensities between even- and odd-numbered clusters. Such alternation was observed in clusters of up to 30 molecules. Excitation to the two lowest electronically excited states seemed to be a strong prerequisite. In view of the well known photodimerization reaction of thymine and uracil in the bulk phase, it is proposed that such alternation in the mass spectral intensity resulted from formation of photodimer units within the cluster on intense UV irradiation. Several analogues of thymine with no known propensity for photodimerization in the bulk phase did not exhibit any sign of such alternation in the cluster mass spectrum. The intrinsic UV window for photodimerization, and hence photoinduced mammalian mutagenesis, was estimated to be approximately 210–280 nm, significantly narrower than the previously reported bulk values of 150–300 nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last 2 decades have seen discoveries in highly excited states of atoms and molecules of phenomena that are qualitatively different from the “planetary” model of the atom, and the near-rigid model of molecules, characteristic of these systems in their low-energy states. A unified view is emerging in terms of approximate dynamical symmetry principles. Highly excited states of two-electron atoms display “molecular” behavior of a nonrigid linear structure undergoing collective rotation and vibration. Highly excited states of molecules described in the “standard molecular model” display normal mode couplings, which induce bifurcations on the route to molecular chaos. New approaches such as rigid–nonrigid correlation, vibrons, and quantum groups suggest a unified view of collective electronic motion in atoms and nuclear motion in molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the results of two-pump and probe femtosecond experiments designed to follow the relaxation dynamics of the lowest excited state (S1) populated by different modes. In the first mode, a direct (S0 → S1) radiative excitation of the ground state is used. In the second mode, an indirect excitation is used where the S1 state is populated by the use of two femtosecond laser pulses with different colors and delay times between them. The first pulse excites the S0 → S1 transition whereas the second pulse excites the S1 → Sn transition. The nonradiative relaxation from the Sn state populates the lowest excited state. Our results suggest that the S1 state relaxes faster when populated nonradiatively from the Sn state than when pumped directly by the S0 → S1 excitation. Additionally, the Sn → S1 nonradiative relaxation time is found to change by varying the delay time between the two pump pulses. The observed dependence of the lowest excited state population as well as its dependence on the delay between the two pump pulses are found to fit a kinetic model in which the Sn state populates a different surface (called S′1) than the one being directly excited (S1). The possible involvement of the Ag type states, the J intermediate, and the conical intersection leading to the S0 or to the isomerization product (K intermediate) are discussed in the framework of the proposed model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the electronically excited state of the isolated reaction center of photosystem II with high-resolution fluorescence spectroscopy at 5 K and compared the obtained spectral features with those obtained earlier for the primary electron donor. The results show that there is a striking resemblance between the emitting and charge-separating states in the photosystem II reaction center, such as a very similar shape of the phonon wing with characteristic features at 19 and 80 cm−1, almost identical frequencies of a number of vibrational modes, a very similar double-Gaussian shape of the inhomogeneous distribution function, and relatively strong electron-phonon coupling for both states. We suggest that the emission at 5 K originates either from an exciton state delocalized over the inactive branch of the photosystem or from a fraction of the primary electron donor that is long-lived at 5 K. The latter possibility can be explained by a distribution of the free energy difference of the primary charge separation reaction around zero. Both possibilities are in line with the idea that the state that drives primary charge separation in the reaction center of photosystem II is a collective state, with contributions from all chlorophyll molecules in the central part of the complex.