2 resultados para Evolutionary algorithm (EA)
em National Center for Biotechnology Information - NCBI
Resumo:
Simplified models of the protein-folding process have led to valuable insights into the generic properties of the folding of heteropolymers. On the basis of theoretical arguments, Shakhnovich and Gutin [(1993) Proc. Natl. Acad. Sci. USA 90, 7195-7199] have proposed a specific method to generate folding sequences for one of these. Here we present a model of folding in heteropolymers that is comparable in simplicity but different in spirit to the one studied by Shakhnovich and Gutin. In our model, the proposed recipe for constructing folding sequence fails. We find that, as a rule, the construction of folding sequences is impossible to achieve by looking at the native conformation only. Rather, competing conformations have to be taken into account too. An evolutionary algorithm that generates folding sequences by optimizing both stability of the native state and folding time is described. Remarkably, this algorithm produces, among others, sequences that fold reproducibly to metastable states.
Resumo:
The reconstruction of multitaxon trees from molecular sequences is confounded by the variety of algorithms and criteria used to evaluate trees, making it difficult to compare the results of different analyses. A global method of multitaxon phylogenetic reconstruction described here, Bootstrappers Gambit, can be used with any four-taxon algorithm, including distance, maximum likelihood, and parsimony methods. It incorporates a Bayesian-Jeffreys'-bootstrap analysis to provide a uniform probability-based criterion for comparing the results from diverse algorithms. To examine the usefulness of the method, the origin of the eukaryotes has been investigated by the analysis of ribosomal small subunit RNA sequences. Three common algorithms (paralinear distances, Jukes-Cantor distances, and Kimura distances) support the eocyte topology, whereas one (maximum parsimony) supports the archaebacterial topology, suggesting that the eocyte prokaryotes are the closest prokaryotic relatives of the eukaryotes.