2 resultados para Evergreen (Cutter)

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How evergreen species store and protect chlorophyll during exposure to high light in winter remains unexplained. This study reveals that the evergreen snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) stores and protects its chlorophylls by forming special complexes that are unique to the winter-acclimated state. Our in vivo spectral and kinetic characterizations reveal a prominent component of the chlorophyll fluorescence spectrum around 715 nm at 77 K. This band coincides structurally with a loss of chlorophyll and an increase in energy-dissipating carotenoids. Functionally, the band coincides with an increased capacity to dissipate excess light energy, absorbed by the chlorophylls, as heat without intrathylakoid acidification. The increased heat dissipation helps protect the chlorophylls from photo-oxidative bleaching and thereby facilitates rapid recovery of photosynthesis in spring.