2 resultados para Europe, Western

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lacustrine deposits infilling the intramontane Guadix-Baza Basin, in the Betic Range of Southern Spain, have yielded abundant well-preserved lithic artifacts. In addition, the lake beds contain a wide range of micromammals including Mimomys savini and Allophaiomys burgondiae and large mammals such as Mammuthus and Hippopotamus together with the African saber-toothed felid Megantereon. The association of the lithic artifacts along with the fossil assemblages, themselves of prime significance in the Eurasian mammal biochronology, is providing new insight into the controversy of the human settlement in Southern Europe. Despite the importance of the artifacts and fossil assemblage, estimates of the geological age of the site are still in conflict. Some attempts at dating the sediments have included biochronology, uranium series, amino acid racemization, and stratigraphic correlation with other well-dated sections in the basin, but so far have failed to yield unambiguous ages. Here we present paleomagnetic age dating at the relevant localities and thus provide useful age constraints for this critical paleoanthropological and mammal site. Our data provide firm evidence for human occupation in Southern Europe in the Lower Pleistocene, around 1 mega-annum ago. The current view of when and how hominids first dispersed into Europe needs to be reevaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two independent multidisciplinary studies of climatic change during the glacial–Holocene transition (ca. 14,000–9,000 calendar yr B.P.) from Norway and Switzerland have assessed organism responses to the rapid climatic changes and made quantitative temperature reconstructions with modern calibration data sets (transfer functions). Chronology at Kråkenes, western Norway, was derived from calibration of a high-resolution series of 14C dates. Chronologies at Gerzensee and Leysin, Switzerland, were derived by comparison of δ18O in lake carbonates with the δ18O record from the Greenland Ice Core Project. Both studies demonstrate the sensitivity of terrestrial and aquatic organisms to rapid temperature changes and their value for quantitative reconstruction of the magnitudes and rates of the climatic changes. The rates in these two terrestrial records are comparable to those in Greenland ice cores, but the actual temperatures inferred apply to the terrestrial environments of the two regions.