10 resultados para Eu-O associate
em National Center for Biotechnology Information - NCBI
Chicken Erythroid AE1 Anion Exchangers Associate with the Cytoskeleton During Recycling to the Golgi
Resumo:
Chicken erythroid AE1 anion exchangers receive endoglycosidase F (endo F)-sensitive sugar modifications in their initial transit through the secretory pathway. After delivery to the plasma membrane, anion exchangers are internalized and recycled to the Golgi where they acquire additional N-linked modifications that are resistant to endo F. During recycling, some of the anion exchangers become detergent insoluble. The acquisition of detergent insolubility correlates with the association of the anion exchanger with cytoskeletal ankyrin. Reagents that inhibit different steps in the endocytic pathway, including 0.4 M sucrose, ammonium chloride, and brefeldin A, block the acquisition of endo F-resistant sugars and the acquisition of detergent insolubility by newly synthesized anion exchangers. The inhibitory effects of ammonium chloride on anion exchanger processing are rapidly reversible. Furthermore, AE1 anion exchangers become detergent insoluble more rapidly than they acquire endo F-resistant modifications in cells recovering from an ammonium chloride block. This suggests that the cytoskeletal association of the recycling anion exchangers occurs after release from the compartment where they accumulate due to ammonium chloride treatment, and prior to their transit through the Golgi. The recycling pool of newly synthesized anion exchangers is reflected in the steady-state distribution of the polypeptide. In addition to plasma membrane staining, anion exchanger antibodies stain a perinuclear compartment in erythroid cells. This perinuclear AE1-containing compartment is also stained by ankyrin antibodies and partially overlaps the membrane compartment stained by NBD C6-ceramide, a Golgi marker. Detergent extraction of erythroid cells in situ has suggested that a substantial fraction of the perinuclear pool of AE1 is cytoskeletal associated. The demonstration that erythroid anion exchangers interact with elements of the cytoskeleton during recycling to the Golgi suggests the cytoskeleton may be involved in the post-Golgi trafficking of this membrane transporter.
Resumo:
Nuclear domains, called cleavage bodies, are enriched in the RNA 3′-processing factors CstF 64 kDa and and CPSF 100 kDa. Cleavage bodies have been found either overlapping with or adjacent to coiled bodies. To determine whether the spatial relationship between cleavage bodies and coiled bodies was influenced by the cell cycle, we performed cell synchronization studies. We found that in G1 phase cleavage bodies and coiled bodies were predominantly coincident, whereas in S phase they were mostly adjacent to each other. In G2 cleavage bodies were often less defined or absent, suggesting that they disassemble at this point in the cell cycle. A small number of genetic loci have been reported to be juxtaposed to coiled bodies, including the genes for U1 and U2 small nuclear RNA as well as the two major histone gene clusters. Here we show that cleavage bodies do not overlap with small nuclear RNA genes but do colocalize with the histone genes next to coiled bodies. These findings demonstrate that the association of cleavage bodies and coiled bodies is both dynamic and tightly regulated and suggest that the interaction between these nuclear neighbors is related to the cell cycle–dependent expression of histone genes.
Resumo:
We have characterized two Saccharomyces cerevisiae proteins, Sro9p and Slf1p, which contain a highly conserved motif found in all known La proteins. Originally described as an autoantigen in patients with rheumatic disease, the La protein binds to newly synthesized RNA polymerase III transcripts. In yeast, the La protein homologue Lhp1p is required for the normal pathway of tRNA maturation and also stabilizes newly synthesized U6 RNA. We show that deletions in both SRO9 and SLF1 are not synthetically lethal with a deletion in LHP1, indicating that the three proteins do not function in a single essential process. Indirect immunofluorescence microscopy reveals that although Lhp1p is primarily localized to the nucleus, Sro9p is cytoplasmic. We demonstrate that Sro9p and Slf1p are RNA-binding proteins that associate preferentially with translating ribosomes. Consistent with a role in translation, strains lacking either Sro9p or Slf1p are less sensitive than wild-type strains to certain protein synthesis inhibitors. Thus, Sro9p and Slf1p define a new and possibly evolutionarily conserved class of La motif-containing proteins that may function in the cytoplasm to modulate mRNA translation.
Resumo:
Coiled bodies (CBs) are nuclear organelles involved in the metabolism of small nuclear RNAs (snRNAs) and histone messages. Their structural morphology and molecular composition have been conserved from plants to animals. CBs preferentially and specifically associate with genes that encode U1, U2, and U3 snRNAs as well as the cell cycle–regulated histone loci. A common link among these previously identified CB-associated genes is that they are either clustered or tandemly repeated in the human genome. In an effort to identify additional loci that associate with CBs, we have isolated and mapped the chromosomal locations of genomic clones corresponding to bona fide U4, U6, U7, U11, and U12 snRNA loci. Unlike the clustered U1 and U2 genes, each of these loci encode a single gene, with the exception of the U4 clone, which contains two genes. We next examined the association of these snRNA genes with CBs and found that they colocalized less frequently than their multicopy counterparts. To differentiate a lower level of preferential association from random colocalization, we developed a theoretical model of random colocalization, which yielded expected values for χ2 tests against the experimental data. Certain single-copy snRNA genes (U4, U11, and U12) but not controls were found to significantly (p < 0.000001) associate with CBs. Recent evidence indicates that the interactions between CBs and genes are mediated by nascent transcripts. Taken together, these new results suggest that CB association may be substantially augmented by the increased transcriptional capacity of clustered genes. Possible functional roles for the observed interactions of CBs with snRNA genes are discussed.
Resumo:
The c-Myc oncoprotein has previously been shown to associate with transcription regulator YY1 and to inhibit its activity. We show herein that endogenous c-Myc and YY1 associate in vivo and that changes in c-Myc levels, which accompany mitogenic stimulation or differentiation of cultured cells, affect the ratio of free to c-Myc-associated YY1. We have also investigated the mechanism by which association with c-Myc inhibits YY1's ability to regulate transcription. c-Myc does not block binding of YY1 to DNA. However, protein association studies suggest that c-Myc interferes with the ability of YY1 to contact basal transcription proteins TATA-binding protein and TFIIB.
Resumo:
A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.
Resumo:
The transmembrane protein-tyrosine-phosphatases (PTPases) LAR, PTP delta, and PTP sigma each contain two intracellular PTPase domains and an extracellular region consisting of Ig-like and fibronectin type III-like domains. We describe the cloning and characterization of human PTP sigma (HPTP sigma) and compare the structure, alternative splicing, tissue distribution, and PTPase activity of LAR, HPTP delta, and HPTP sigma, as well their ability to associate with the intracellular coiled-coil LAR-interacting protein LIP.1. Overall, these three PTPases are structurally very similar, sharing 64% amino acid identity. Multiple isoforms of LAR, HPTP delta, and HPTP sigma appear to be generated by tissue-specific alternative splicing of up to four mini-exon segments that encode peptides of 4-16 aa located in both the extracellular and intracellular regions. Alternative usage of these peptides varies depending on the tissue mRNA analyzed. Short isoforms of both HPTP sigma and HPTP delta were also detected that contain only four of the eight fibronectin type III-like domains. Northern blot analysis indicates that LAR and HPTP sigma are broadly distributed whereas HPTP delta expression is largely restricted to brain, as is the short HPTP sigma isoform containing only four fibronectin type III-like domains. LAR, HPTP delta, and HPTP sigma exhibit similar in vitro PTPase activities and all three interact with LIP.1, which has been postulated to recruit LAR to focal adhesions. Thus, these closely related PTPases may perform similar functions in various tissues.
Resumo:
The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.
Resumo:
The cdc25 phosphatases play key roles in cell cycle progression by activating cyclin-dependent kinases. Two members of the 14-3-3 protein family have been isolated in a yeast two-hybrid screen designed to identify proteins that interact with the human cdc25A and cdc25B phosphatases. Genes encoding the human homolog of the 14-3-3 epsilon protein and the previously described 14-3-3 beta protein have been isolated in this screening. 14-3-3 proteins constitute a family of well-conserved eukaryotic proteins that were originally isolated in mammalian brain preparations and that possess diverse biochemical activities related to signal transduction. We present evidence that indicates that cdc25 and 14-3-3 proteins physically interact both in vitro and in vivo. 14-3-3 protein does not, however, affect the phosphatase activity of cdc25A. Raf-1, which is known to bind 14-3-3 proteins, has recently been shown to associate with cdc25A and to stimulate its phosphatase activity. 14-3-3 protein, however, has no effect on the cdc25A-kinase activity of Raf-1. Instead, 14-3-3 may facilitate the association of cdc25 with Raf-1 in vivo, participating in the linkage between mitogenic signaling and the cell cycle machinery.
Resumo:
Coiled bodies (CBs) are nuclear organelles whose structures appear to be highly conserved in evolution. In rapidly cycling cells, they are typically located in the nucleoplasm but are often found in contact with the nucleolus. The CBs in human cells contain a unique protein, called p80-coilin. Studies on amphibian oocyte nuclei have revealed a protein within the "sphere" organelle that shares significant structural similarity to p80-coilin. Spheres and CBs are also highly enriched in small nuclear ribonucleoproteins and other RNA-processing components. We present evidence that, like spheres, CBs contain U7 small nuclear RNA (snRNA) and associate with specific chromosomal loci. Using biotinylated 2'-O-methyl oligonucleotides complementary to the 5' end of U7 snRNA and fluorescence in situ hybridization, we show that U7 is distributed throughout the nucleoplasm, excluding nucleoli, and is concentrated in CBs. Interestingly, we found that CBs often associate with subsets of the histone, U1, and U2 snRNA gene loci in interphase HeLa-ATCC and HEp-2 monolayer cells. However, in a strain of suspension-grown HeLa cells, called HeLa-JS1000, we found a much lower rate of association between CBs and snRNA genes. Possible roles for CBs in the metabolism of these various histone and snRNAs are discussed.