77 resultados para Estrus induction

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

G1/S and G2/M cell cycle checkpoints maintain genomic stability in eukaryotes in response to genotoxic stress. We report here both genetic and functional evidence of a Gadd45-mediated G2/M checkpoint in human and murine cells. Increased expression of Gadd45 via microinjection of an expression vector into primary human fibroblasts arrests the cells at the G2/M boundary with a phenotype of MPM2 immunopositivity, 4n DNA content and, in 15% of the cells, centrosome separation. The Gadd45-mediated G2/M arrest depends on wild-type p53, because no arrest was observed either in p53-null Li–Fraumeni fibroblasts or in normal fibroblasts coexpressed with p53 mutants. Increased expression of cyclin B1 and Cdc25C inhibited the Gadd45-mediated G2/M arrest in human fibroblasts, indicating that the mechanism of Gadd45-mediated G2/M checkpoint is at least in part through modulation of the activity of the G2-specific kinase, cyclin B1/p34cdc2. Genetic and physiological evidence of a Gadd45-mediated G2/M checkpoint was obtained by using GADD45-deficient human or murine cells. Human cells with endogenous Gadd45 expression reduced by antisense GADD45 expression have an impaired G2/M checkpoint after exposure to either ultraviolet radiation or methyl methanesulfonate but are still able to undergo G2 arrest after ionizing radiation. Lymphocytes from gadd45-knockout mice (gadd45 −/−) also retained a G2/M checkpoint initiated by ionizing radiation and failed to arrest at G2/M after exposure to ultraviolet radiation. Therefore, the mammalian genome is protected by a multiplicity of G2/M checkpoints in response to specific types of DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agonist ligands for the nuclear receptor peroxisome proliferator-activated receptor-γ have been shown to induce terminal differentiation of normal preadipocytes and human liposarcoma cells in vitro. Because the differentiation status of liposarcoma is predictive of clinical outcomes, modulation of the differentiation status of a tumor may favorably impact clinical behavior. We have conducted a clinical trial for treatment of patients with advanced liposarcoma by using the peroxisome proliferator-activated receptor-γ ligand troglitazone, in which extensive correlative laboratory studies of tumor differentiation were performed. We report here the results of three patients with intermediate to high-grade liposarcomas in whom troglitazone administration induced histologic and biochemical differentiation in vivo. Biopsies of tumors from each of these patients while on troglitazone demonstrated histologic evidence of extensive lipid accumulation by tumor cells and substantial increases in NMR-detectable tumor triglycerides compared with pretreatment biopsies. In addition, expression of several mRNA transcripts characteristic of differentiation in the adipocyte lineage was induced. There was also a marked reduction in immunohistochemical expression of Ki-67, a marker of cell proliferation. Together, these data indicate that terminal adipocytic differentiation was induced in these malignant tumors by troglitazone. These results indicate that lineage-appropriate differentiation can be induced pharmacologically in a human solid tumor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19ARF synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Neisseria meningitidis (MC) to interact with cellular barriers is essential to its pathogenesis. With epithelial cells, this process has been modeled in two steps. The initial stage of localized adherence is mediated by bacterial pili. After this phase, MC disperse and lose piliation, thus leading to a diffuse adherence. At this stage, microvilli have disappeared, and MC interact intimately with cells and are, in places, located on pedestals of actin, thus realizing attaching and effacing (AE) lesions. The bacterial attributes responsible for these latter phenotypes remain unidentified. Considering that bacteria are nonpiliated at this stage, pili cannot be directly responsible for this effect. However, the initial phase of pilus-mediated localized adherence is required for the occurrence of diffuse adherence, loss of microvilli, and intimate attachment, because nonpiliated bacteria are not capable of such a cellular interaction. In this work, we engineered a mutation in the cytoplasmic nucleotide-binding protein PilT and showed that this mutation increased piliation and abolished the dispersal phase of bacterial clumps as well as the loss of piliation. Furthermore, no intimate attachment nor AE lesions were observed. On the other hand, PilT− MC remained adherent as piliated clumps at all times. Taken together these data demonstrate that the induction of diffuse adherence, intimate attachment, and AE lesions after pilus-mediated adhesion requires the cytoplasmic PilT protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid carcinoma cells A431. PDT resulted in apoptosis, inhibition of cell growth, and G0-G1 phase arrest of the cell cycle, in a time-dependent fashion. Western blot analysis revealed that PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21, and a down-regulation of cyclin D1 and cyclin E, and their catalytic subunits cyclin-dependent kinase (cdk) 2 and cdk6. The treatment also resulted in a decrease in kinase activities associated with all the cdks and cyclins examined. PDT also resulted in (i) an increase in the binding of cyclin D1 and cdk6 toward WAF1/CIP1/p21, and (ii) a decrease in the binding of cyclin D1 toward cdk2 and cdk6. The binding of cyclin E and cdk2 toward WAF1/CIP1/p21, and of cyclin E toward cdk2 did not change by the treatment. These data suggest that PDT-mediated induction of WAF1/CIP1/p21 results in an imposition of artificial checkpoint at G1 → S transition thereby resulting in an arrest of cells in G0-G1 phase of the cell cycle through inhibition in the cdk2, cdk6, cyclin D1, and cyclin E. We suggest that this arrest is an irreversible process and the cells, unable to repair the damages, ultimately undergo apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear receptors regulate metabolic pathways in response to changes in the environment by appropriate alterations in gene expression of key metabolic enzymes. Here, a computational search approach based on iteratively built hidden Markov models of nuclear receptors was used to identify a human nuclear receptor, termed hPAR, that is expressed in liver and intestines. hPAR was found to be efficiently activated by pregnanes and by clinically used drugs including rifampicin, an antibiotic known to selectively induce human but not murine CYP3A expression. The CYP3A drug-metabolizing enzymes are expressed in gut and liver in response to environmental chemicals and clinically used drugs. Interestingly, hPAR is not activated by pregnenolone 16α-carbonitrile, which is a potent inducer of murine CYP3A genes and an activator of the mouse receptor PXR.1. Furthermore, hPAR was found to bind to and trans-activate through a conserved regulatory sequence present in human but not murine CYP3A genes. These results provide evidence that hPAR and PXR.1 may represent orthologous genes from different species that have evolved to regulate overlapping target genes in response to pharmacologically distinct CYP3A activators, and have potential implications for the in vitro identification of drug interactions important to humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instability of repetitive sequences, both in intronic sequences and within coding regions, has been demonstrated to be a hallmark of genomic instability in human cancer. Understanding how these mutational events arise may provide an opportunity for prevention or early intervention in cancer development. To study the source of this instability, we have identified a region of the β-lactamase gene that is tolerant to the insertion of fragments of exogenous DNA as large as 1,614 bp with minimal loss of enzyme activity, as determined by antibiotic resistance. Fragments inserted out-of-frame render Escherichia coli sensitive to antibiotic, and compensatory frameshift mutations that restore the reading frame of β-lactamase can be selected on the basis of antibiotic resistance. We have utilized this site to insert a synthetic microsatellite sequence within the β-lactamase gene and selected for mutations yielding frameshifts. This assay provides for detection of one frameshift mutation in a background of 106 wild-type sequences. Mismatch repair deficiency increased the observed frameshift frequency ≈300-fold. Exposure of plasmid containing microsatellite sequences to hydrogen peroxide resulted in frameshift mutations that were localized exclusively to the microsatellite sequences, whereas DNA damage by UV or N-methyl-N′-nitro-N-nitrosoguanidine did not result in enhanced mutagenesis. We postulate that in tumor cells, endogenous production of oxygen free radicals may be a major factor in promoting instability of microsatellite sequences. This β-lactamase assay may provide a sensitive methodology for the detection and quantitation of mutations associated with the development of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt and water secretion from intestinal epithelia requires enhancement of anion permeability across the apical membrane of Cl− secreting cells lining the crypt, the secretory gland of the intestine. Paneth cells located at the base of the small intestinal crypt release enteric defensins (cryptdins) apically into the lumen. Because cryptdins are homologs of molecules known to form anion conductive pores in phospholipid bilayers, we tested whether these endogenous antimicrobial peptides could act as soluble inducers of channel-like activity when applied to apical membranes of intestinal Cl− secreting epithelial cells in culture. Of the six peptides tested, cryptdins 2 and 3 stimulated Cl− secretion from polarized monolayers of human intestinal T84 cells. The response was reversible and dose dependent. In contrast, cryptdins 1, 4, 5, and 6 lacked this activity, demonstrating that Paneth cell defensins with very similar primary structures may exhibit a high degree of specificity in their capacity to elicit Cl− secretion. The secretory response was not inhibited by pretreatment with 8-phenyltheophyline (1 μM), or dependent on a concomitant rise in intracellular cAMP or cGMP, indicating that the apically located adenosine and guanylin receptors were not involved. On the other hand, cryptdin 3 elicited a secretory response that correlated with the establishment of an apically located anion conductive channel permeable to carboxyfluorescein. Thus cryptdins 2 and 3 can selectively permeabilize the apical cell membrane of epithelial cells in culture to elicit a physiologic Cl− secretory response. These data define the capability of cryptdins 2 and 3 to function as novel intestinal secretagogues, and suggest a previously undescribed mechanism of paracrine signaling that in vivo may involve the reversible formation of ion conductive channels by peptides released into the crypt microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic exposure to cocaine leads to prominent, long-lasting changes in behavior that characterize a state of addiction. The striatum, including the nucleus accumbens and caudoputamen, is an important substrate for these actions. We previously have shown that long-lasting Fos-related proteins of 35–37 kDa are induced in the striatum by chronic cocaine administration. In the present study, the identity and functional role of these Fos-related proteins were examined using fosB mutant mice. The striatum of these mice completely lacked basal levels of the 35- to 37-kDa Fos-related proteins as well as their induction by chronic cocaine administration. This deficiency was associated with enhanced behavioral responses to cocaine: fosB mutant mice showed exaggerated locomotor activation in response to initial cocaine exposures as well as robust conditioned place preference to a lower dose of cocaine, compared with wild-type littermates. These results establish the long-lasting Fos-related proteins as products of the fosB gene (specifically ΔFosB isoforms) and suggest that transcriptional regulation by fosB gene products plays a critical role in cocaine-induced behavioral responses. This finding demonstrates that a Fos family member protein plays a functional role in behavioral responses to drugs of abuse and implicates fosB gene products as important determinants of cocaine abuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calretinin (Cr) is a Ca2+ binding protein present in various populations of neurons distributed in the central and peripheral nervous systems. We have generated Cr-deficient (Cr−/−) mice by gene targeting and have investigated the associated phenotype. Cr−/− mice were viable, and a large number of morphological, biochemical, and behavioral parameters were found unaffected. In the normal mouse hippocampus, Cr is expressed in a widely distributed subset of GABAergic interneurons and in hilar mossy cells of the dentate gyrus. Because both types of cells are part of local pathways innervating dentate granule cells and/or pyramidal neurons, we have explored in Cr−/− mice the synaptic transmission between the perforant pathway and granule cells and at the Schaffer commissural input to CA1 pyramidal neurons. Cr−/− mice showed no alteration in basal synaptic transmission, but long-term potentiation (LTP) was impaired in the dentate gyrus. Normal LTP could be restored in the presence of the GABAA receptor antagonist bicuculline, suggesting that in Cr−/− dentate gyrus an excess of γ-aminobutyric acid (GABA) release interferes with LTP induction. Synaptic transmission and LTP were normal in CA1 area, which contains only few Cr-positive GABAergic interneurons. Cr−/− mice performed normally in spatial memory task. These results suggest that expression of Cr contributes to the control of synaptic plasticity in mouse dentate gyrus by indirectly regulating the activity of GABAergic interneurons, and that Cr−/− mice represent a useful tool to understand the role of dentate LTP in learning and memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate [poly(P)] levels in Escherichia coli were reduced to barely detectable concentrations by expression of the plasmid-borne gene for a potent yeast exopolyphosphatase [poly(P)ase]. As a consequence, resistance to H2O2 was greatly diminished, particularly in katG (catalase HPI) mutants, implying a major role for the other catalase, the stationary-phase KatE (HPII), which is rpoS dependent. Resistance was restored to wild-type levels by complementation with plasmids expressing ppk, the gene for PPK [the polyphosphate kinase that generates poly(P)]. Induction of expression of both katE and rpoS (the stationary-phase σ factor) was prevented in cells in which the poly(P)ase was overproduced. Inasmuch as this inhibition by poly(P)ase did not affect the levels of the stringent-response guanosine nucleotides (pppGpp and ppGpp) and in view of the capacity of additional rpoS expression to suppress the poly(P)ase inhibition of katE expression, a role is proposed for poly(P) in inducing the expression of rpoS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila Mad proteins are intracellular signal transducers of decapentaplegic (dpp), the Drosophila transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) homolog. Studies in which the mammalian Smad homologs were transiently overexpressed in cultured cells have implicated Smad2 in TGF-β signaling, but the physiological relevance of the Smad3 protein in signaling by TGF-β receptors has not been established. Here we stably expressed Smad proteins at controlled levels in epithelial cells using a novel approach that combines highly efficient retroviral gene transfer and quantitative cell sorting. We show that upon TGF-β treatment Smad3 becomes rapidly phosphorylated at the SSVS motif at its very C terminus. Either attachment of an epitope tag to the C terminus or replacement of these three serine residues with alanine abolishes TGF-β-induced Smad3 phosphorylation; these proteins act in a dominant-negative fashion to block the antiproliferative effect of TGF-β in mink lung epithelial cells. A Smad3 protein in which the three C-terminal serines have been replaced by aspartic acids is also a dominant inhibitor of TGF-β signaling, but can activate plasminogen activator inhibitor 1 (PAI-1) transcription in a ligand-independent fashion when its nuclear localization is forced by transient overexpression. Phosphorylation of the three C-terminal serine residues of Smad3 by an activated TGF-β receptor complex is an essential step in signal transduction by TGF-β for both inhibition of cell proliferation and activation of the PAI-1 promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Okadaic acid (OA) is a strong tumor promoter of mouse skin carcinogenesis and also a potent inhibitor of serine/threonine protein phosphatases. OA induces various genetic alterations in cultured cells, such as diphtheria-toxin-resistance mutations, sister chromatid exchange, exclusion of exogenous transforming oncogenes, and gene amplification. The present study revealed that it caused minisatellite mutation (MSM) at a high frequency in NIH 3T3 cells, although no microsatellite mutation was found. Nine of 31 clones (29%) exhibited MSM after 6 days of OA treatment, as opposed to only 1 of 30 clones (3%) without OA exposure. Moreover, NIH 3T3 cells treated with OA acquired tumorigenicity in nude mice, giving rise to 7 tumors within 25 weeks in 20 sites where 3 × 106 cells were injected. In contrast, the same numbers of untreated cells gave rise to only one tumor, and the tumor grew much slower. All of three OA-induced tumors examined manifested the MSM. The findings thus point to a molecular mechanism by which OA could function as a tumor promoter, and also the biological relevance of the induction of MSM in the tumorigenic process by OA.